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ABSTRACT

We use a large cross section of equity returns to estimate a rich affine model of eq-
uity prices, dividends, returns, and their dynamics. Our model prices dividend strips
of the market and equity portfolios without using strips data in the estimation. Yet
model-implied equity yields closely match yields on traded strips. Our model extends
equity term-structure data over time (to the 1970s) and across maturities, and gen-
erates term structures for various equity portfolios. The novel cross section of term
structures from our model covers 45 years and includes several recessions, providing
a novel set of empirical moments to discipline asset pricing models.

THE TERM STRUCTURE OF DISCOUNT rates for risky assets plays an important
role in many fundamental economic contexts. For example, pricing an asset
with a specific horizon of cash flows and evaluating an investment opportunity
with a specific maturity requires knowing the maturity-specific discount rate.
Investment in climate change mitigation, where the maturity of the project is
especially long and therefore the long end of the term structure is especially
important, is one well-known example.
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In this paper, we specify and estimate a rich affine model of equity portfolios.
The model describes the prices, dividends, and excess returns of a large cross
section of portfolios, as well as their dynamics. While the model is driven by
many parameters, we impose discipline on the model by imposing pricing re-
strictions, by appropriately choosing the state vector that drives the dynamics
of the economy, and by imposing parameter restrictions that reflect recent
findings in the literature on return predictability with large cross sections.
We then use our model to generate a term structure of discount rates not
only for aggregate cash flows (the S&P 500), but also for many other equity
portfolios, obtaining a large panel of 102 term structures of discount rates
with arbitrary maturity going up to infinity and with a time series going back
to the 1970s. We validate the predictions of our model for the discount rates of
risky cash flows by comparing the implied dividend strips from our model to
the prices of actually traded dividend strips (from Bansal et al. (2021) (BMSY)
and van Binsbergen and Koijen (2015)). We show that our model—estimated
using no dividend strip data at all—well matches the prices of traded divi-
dend strips on the S&P 500 of maturities of one, two, five, and seven years,
observed since 2004, along a variety of dimensions (average slope, time series,
etc.). After validating the model using observed strip data, we then use it to
explore the properties of implied dividend strips extending the time series
back to the 1970s, and to study the cross section of term structures of different
portfolios.

To estimate the term structure of discount rates for risky assets, early work
in the asset pricing literature has proposed extracting information about the
term structure from the cross section of equity portfolios. The broad idea
behind this approach is that if some stocks are mostly exposed to long-term
cash-flow shocks, while others are mostly exposed to short-term shocks, the
difference in risk premia between the two types of stocks can be attributed to
a difference in how investors price shocks to cash flows of different maturities,
that is, to the term structure of discount rates applied by investors (see Bansal,
Dittmar, and Lundblad (2005), Lettau and Wachter (2007), Hansen, Heaton,
and Li (2008), and Da (2009)).

While this literature has advanced our understanding of what the cross
section of equity portfolios implies for the term structure of discount rates, it
faces an important challenge: the term structure of discount rates depends on
the entire dynamics of cash flows as well as investors’ risk preferences and
variations in these preferences over time. That is, the term structure of dis-
count rates is an equilibrium result that depends on the interactions between
a large number of factors. To identify and estimate the model, the papers in
this literature impose strong assumptions on investors’ risk preferences (e.g.,
Epstein-Zin preferences, constant risk aversion, restrictions on which shocks
are priced by investors, etc.), on the dynamics of the economy and cash flows,
or both.

Renewed interest in the study of term structures has come from the in-
troduction of data on traded dividend claims (van Binsbergen, Brandt, and
Koijen (2012), van Binsbergen et al. (2013), and van Binsbergen and Koijen
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(2015)). The ability to directly observe the returns of finite-maturity dividend
claims gives us a direct window into the risk premia that investors require
to hold risks of different maturities, obviating the need to estimate investors’
risk preferences and the dynamics of the economy. Studying term structures
with traded dividend strip data, however, faces several challenges of its own.
First, the time series is quite limited, since data are available starting around
2004, and it includes only one recession with associated recovery, the Great
Recession. Second, there is little cross-sectional data, since only the aggregate
market dividend strips (for the United States as well as other countries) start
around 2004; much more limited data are available on individual firms. Third,
typically only a part of the term structure is observed (a few maturities up to
seven years). Fourth, there are concerns about the liquidity of these contracts,
which could lead to measurement error.

In this paper, we return to the first approach to estimate term structures
based on equity portfolios alone. We use our model to generate new (implied)
term-structure data that expand existing (observed) data along each of the di-
mensions above. In particular, the term structures that we generate cover a
large number of cross-sectional portfolios, in addition to the S&P 500, for a
total of 102 portfolios. Moreover, they start in 1975 and therefore have a long
time series that covers several recessions and booms. They also span all possi-
ble maturities, including very short and very long ends of the term structure.

While closely related to models used in prior literature to study term
structures using equity portfolios, our model has a few distinct features that
are crucial to generate realistic implied term structures that match those we
observed from traded dividend claims. The model features rich dynamics that
are motivated by recent empirical evidence in the literature and we believe
are both economically reasonable and statistically parsimonious. Specifically,
consistent with Kozak, Nagel, and Santosh (2020) and Giglio and Xiu (2021),
who show that a few dominant principal components (PCs) of a large cross
section of anomaly portfolio returns explain the cross section of expected
returns well, our state vector includes four-factor returns (PCs) estimated
from a large cross section of 51 anomalies.

Further motivation comes from Haddad, Kozak, and Santosh (2020), who
demonstrate that valuation ratios strongly and robustly predict expected
returns on these PCs, and their risk prices in the stochastic discount factor
(SDF), in the time series. They argue that the resulting time variation in
risk prices is critical to adequately capture dynamic properties of the pricing
kernel. Chernov, Lochstoer, and Lundeby (2018) echo the importance of time
variation in prices of risk by proposing that asset pricing models use multi-
horizon returns. Motivated by these findings, our specification also includes
four-factor yields (dividend-to-price (D/P) ratios) associated with the factor
returns—for a total of eight variables in the state vector—which allows us to
capture the dynamics of conditional means and SDF risk prices.

Overall, our specification allows both dividend growth and risk premia to
vary over time in minimally restricted ways, and has a general affine spec-
ification for the SDF in which shocks to factor returns are priced and their
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risk prices are captured by valuation ratios. The fact that our state variables
are factor yields and factor returns means that, on the one hand, our state
variables are forward-looking and can be expected to contain information
about the evolution of the economy, and, on the other hand, the factors need
to satisfy certain pricing restrictions, that better pin down their dynamics.
It is this balance of a rich model with appropriately chosen restrictions that
represents the core of our paper: it allows us to produce term structures
of discount rates that well match the observed discount rates, which in-
creases our confidence in extending term structures over time, maturities, and
portfolios.

We start with a large cross section of test asset returns r, on 102 port-
folios. We specify and estimate a homoskedastic affine model in which the
factors F; that drive the dynamics of the test asset returns are chosen to be
the linear combinations of assets’ excess returns and dividend yields, that
is, F; = [f:+ fy:]', where factor returns, f.; =@’ (rt - rf,t), and factor yields,
fyt = Q'y:, are the same linear combination of log excess returns and yields
on the test assets, given by some matrix @. We restrict the first factor to
coincide with the excess log market return, and the rest to be based on the
three largest PCs of 51 long-short anomaly portfolios constructed from the
102 long-only portfolios, as in Haddad, Kozak, and Santosh (2020) and Kozak
(2024). This choice of model factors has two main advantages. First, it well
captures the covariation of returns of the anomaly portfolios (together, the
four-factor returns explain 93.3% of the total variation in excess returns in
the panel of 102 long portfolios). Second, the factor returns are well predicted
by their own dividend yields, which, conveniently, are also part of our state
vector F;. So our state vector F; contains variables that are useful to predict
excess returns (and dividends, which are related by an identity to prices
and returns).

We restrict this affine model in only two ways. First, we impose that the
innovations of the SDF in the economy depend only on the innovations in
factor returns (and not on the innovations in factor yields), that is, we assume
that the SDF innovations are fully spanned by the factor returns. Second, we
impose that the four-factor yields f,; contain all available information about
the future (so that lagged returns do not help predict future yields and returns
after controlling for lagged yields). In practice, it is well known that dividend
yields have much stronger predictive power for future dividends and returns
than lagged returns, and we simply impose this regularity by assumption in
our statistical model.

We do not impose any other restrictions on the model, except of course
the pricing restrictions that link the pricing kernel to prices, dividends, and
returns. These restrictions imply, as is usual in these cases, that the dividend
growth process for each portfolio is fully pinned down by the (nonlinear)
identity that links prices, returns, and dividends.

We end up with an estimated model that, with its eight state variables, is
rich enough to capture a variety of possible dynamics for prices, excess returns,
and dividends. The model immediately produces implied term structures of

3SUSD1 7 SUOWILLOD) aA 11D 3|aeotdde ay Ag pausenob afe sappie YO ‘8sn Jo Sa|ni oy Arlq 1 autjuQ 8|1\ UO (SUONIPUOD-pUe-SLLLIBYWOD AB 1M Ale.q 1 pU 1 [UO//:SANY) SUOIPUOD pue SWS | 8Y31 89S “[202/2T/62] U0 AfiqiauliuQ A[IM ‘Y6EET HOITTTT OT/I0p/wod A8 1M ARelg 1 puljuo//Sdny Wwou papeoumod ‘9 ‘v20Z ‘T9Z90VST



Equity Term Structures without Dividend Strips Data 4147

dividend strips and forwards, that is, spot or forward claims on a specific div-
idend at some point in the future; it produces a different term structure for
each of the four portfolios that are part of the state vector F;. But the model
does more: because the four factors well span the cross section of returns and
dividend yields of the original 102 characteristic-sorted portfolios, it can easily
generate implied term structures for any of these portfolios.

Our estimated model delivers a variety of novel empirical results. First, we
extend the study of the term structure of aggregate dividend claims (on the
S&P 500, as in van Binsbergen and Koijen (2015)) over time (back to the 1970s)
and across maturities. In the sample starting in 2004 that was used in van
Binsbergen and Koijen (2015), we match the time series of forward dividend
yields very closely, and thus we, mechanically, also match the term structure of
discount rates.! The term structure of forward risk premia in this sample ap-
pears to be mildly upward sloping, though not significantly so. We also confirm
that our implied term structure inverts during the financial crisis, just like the
observed term structure does.?

Extending the sample to the 1970s allows us to include several additional
recessions in our sample; at the same time, the Great Recession carries less
overall weight in the sample. It is interesting to see that all of the results
of the post-2004 sample carry over to the longer sample. The term structure
inverts in almost all of the additional recessions (e.g., in the early 1980s and
1990s), and the term structure of forward discount rates is still close mildly
upward sloping on average, but not significantly so.

In addition, a decomposition of the movements of prices of short-term div-
idend claims into expected dividend growth and expected risk premia shows
that the former varies substantially over time: investors expected low dividend
growth during the 1980 and 1990 recessions, as well as during the Great Reces-
sion, and this moved the prices of the short-term dividend claims substantially.

The most important and novel results of our paper are the estimated term
structures of discount rates for different portfolios, like value and growth
firms, or small and large firms. Our model generates interesting differences in
both the average term structure across portfolios and the time series. For ex-
ample, term structures of long-short portfolios such as Small Minus Big (SMB)
and High Minus Low value (HML) are fundamentally different: the SMB port-
folio appears to exhibit a downward-sloping term structure, while the HML
portfolio has an upward-sloping term structure, despite the fact that both
portfolios have positive unconditional risk premium in our sample. We show
that other long-short portfolios, such as profitability, growth, momentum, and

1 We also verify that the ability of the model to match traded strip prices is robust to a variety
of changes in our model specification.

2We note that because our implied dividend strip prices are based on equity portfolios, they
are less susceptible to the potential criticism raised by Bansal et al. (2021) that traded dividend
strips may be illiquid and that bid-ask spreads may affect conclusions about the slope of the term
structure. The fact that we match those prices very closely using only (very liquid) equity portfolios
suggests that liquidity does not drive the findings of van Binsbergen and Koijen (2015) in the
first place.

3SUSD1 7 SUOWILLOD) aA 11D 3|aeotdde ay Ag pausenob afe sappie YO ‘8sn Jo Sa|ni oy Arlq 1 autjuQ 8|1\ UO (SUONIPUOD-pUe-SLLLIBYWOD AB 1M Ale.q 1 pU 1 [UO//:SANY) SUOIPUOD pue SWS | 8Y31 89S “[202/2T/62] U0 AfiqiauliuQ A[IM ‘Y6EET HOITTTT OT/I0p/wod A8 1M ARelg 1 puljuo//Sdny Wwou papeoumod ‘9 ‘v20Z ‘T9Z90VST



4148 The Journal of Finance®

idiosyncratic volatility, exhibit distinct term structures of expected returns.
Theoretical models that aim to explain these different spreads (like those pro-
posed to explain the size and value premia) can make use of these estimates to
help refine and calibrate the economic mechanisms. Our estimates of the term
structure of different portfolios provide us with additional empirical moments
that can be compared to the corresponding models’ moments.

Finally, there are interesting patterns in the time series of slopes of the
yield term structure of different portfolios. For example, the slopes of small
and large stocks tend to move together, with both term structures upward
sloping during the 1990s and both downward sloping during the Great Re-
cession. Yet only the term structure for small stocks inverted during the late-
1990s cycle, marking an important divergence between the two portfolios that
lasted several years. In contrast, no such divergence in the shape of the term
structure can be seen for value and growth stocks in that period—instead,
the largest difference in these stocks occurred during the recovery from the
financial crisis: after 2008, the term structure of value-stock expected returns
increased significantly, whereas expected returns of growth stocks showed no
such pattern.

In sum, our model effectively processes a rich information set—the time-
series and cross-sectional behavior of 102 portfolios spanning a wide range of
equity risks—to produce “stylized facts”—the time-series and cross-sectional
behavior of implied dividend term structures—that summarize a dimension of
the data that is particularly informative about our economic models. Similar
to how the introduction of vector autoregressions (VARs) by Sims (1980)
provided new moments with which to evaluate structural macro models (the
impulse-response functions that were generated by the VARs), the objective
of this paper is to produce a realistic term structure of discount rates for
different portfolios that closely resemble the actual dividend claims observed
in the data, and that can be used by asset pricing models as a moment for
evaluation and guidance.

It is important to note that our estimates of equity yields, discount rates,
and returns on specific dividend claims are subject to two types of estimation
uncertainty. First, uncertainty comes from the fact that the prices of the
dividend strips that our model produces are not actually observed, but rather
are obtained from model parameters, which are subject to estimation error.
We refer to this source of uncertainty as parameter uncertainty. Second, un-
certainty comes from the fact that some moments of interest (e.g., the average
slope of the dividend term structure) are estimated from averages taken over
finite samples. This last type of uncertainty, which we refer to as sampling un-
certainty, is present even when prices are observable. What our model brings
to the table is, in a sense, a trade-off between these two sources of uncertainty.
Compared to using observed dividend strips, working with estimated dividend
strips introduces parameter uncertainty. At the same time, our method al-
lows us to dramatically expand the time series available, reducing sampling
uncertainty. Which of the two forces dominates total uncertainty depends
on the context. In our empirical setting, we find that sampling uncertainty
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dominates, so our method allows us to significantly reduce standard errors
on many moments of interest. To help future researchers take this estimation
uncertainty into account, we provide the standard errors of our estimated
equity yields along with their point estimates on our website.?

Our methodology lends itself to a variety of applications. As we mentioned
above, one direct application is to test and calibrate asset pricing models,
by using our estimated model to produce additional empirical moments. In
the paper, we illustrate this idea using our estimated term structures to
test workhorse asset pricing models (like Campbell and Cochrane (1999),
Bansal and Yaron (2004)). More interestingly, however, our rich set of term
structures of different portfolios can be used to test further predictions of
the models, such as the cross-sectional heterogeneity in the shapes of the
term structures across portfolios. In addition, our term structures can be
used for the valuation of projects with specific horizons. For example, Gupta
and Van Nieuwerburgh (2021) use them to evaluate private equity invest-
ments. An alternative application is climate change mitigation investments,
where the long end of the term structure is especially important (see, e.g.,
Giglio et al. (2015)).

Beyond the seminal literature using equity portfolios or dividend strips
to calibrate and estimate empirical term structures, our paper also relates
to a more recent literature that builds on these approaches to improve our
understanding of term structures. This literature focuses largely on the
term structure of aggregate dividend claims. Some papers explore the joint
behavior of the aggregate stock market and Treasury bonds (Lettau and
Wachter (2011), Ang and Ulrich (2012), Koijen, Lustig, and Van Nieuwerburgh
(2017)), whereas others use traded dividend strip data in the estimation
(Kragt, de Jong, and Driessen (2014), Yan (2015), Gomes and Ribeiro (2019)).
Recently, Gupta and Van Nieuwerburgh (2021) use term structures of discount
rates from a similar affine model to value private equity investment; given
their different objective, they use specific portfolios in their model (small and
large firms, real estate investment trusts (REITs), and infrastructure firms).
In contrast, our objective is to select the state variables that best describe
the full dynamics of the economy, so our choice of factors is determined by
the ability to best represent a vast cross section of portfolios, and our main
objective is to produce realistic dividend strips that best match the traded
ones.

The paper also relates to a large number of studies that explore the term
structure of risky assets, in addition to that of equity market dividend claims.
Among these, prior studies focus on the term structure of currency risk
(Backus, Boyarchenko, and Chernov (2018)), variance risk (Dew-Becker et al.
(2017)), and housing risk (Giglio, Maggiori, and Stroebel (2014)). Chernov,
Lochstoer, and Lundeby (2018) stress the usefulness of multiperiod returns to
test asset pricing models. Several papers propose models that aim to explain
observed patterns in the term structure of discount rates (Croce, Lettau, and

3 See https://www.serhiykozak.com/data.
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Ludvigson (2014), Gormsen (2021)). Methodologically, our paper is also related
to Adrian, Crump, and Moench (2015), who propose a similar affine structure
of the SDF but do not use it to explore the term structure of risky assets.

Finally, our paper relates to a third approach used in the literature to ex-
plore the term structure of discount rates using equity portfolios only. This ap-
proach, followed by Weber (2018), Gormsen and Lazarus (2023), and Gongalves
(2021), estimates the duration of portfolios directly (rather than by modeling
the dynamics of dividends and estimating duration as exposures to dividend
shocks of different horizons) and uses it to back out implied discount rates at
different horizons.

The rest of the paper is organized as follows. In Section I, we develop our
framework. In Section I, we describe the data. Section III presents the results.
Section IV concludes.

I. The Model
A. Motivation

In this section, we introduce our reduced-form asset pricing model. The
model specifies: (i) an SDF that depends on factors and their shocks, (ii) a
full specification of the factor dynamics, and (iii) equations linking the prices
and returns of any portfolios to those factors. This model is quite general; to
make estimation and identification feasible, we impose different restrictions
when we bring the model to the data.

The specification for the SDF and the choice of factors builds on the empir-
ical evidence in Kozak, Nagel, and Santosh (2018) and Haddad, Kozak, and
Santosh (2020), who construct asset pricing factors for the cross section using
PCs of a large cross section of test portfolios, and discuss empirically success-
ful restrictions on the determinants of risk prices (specifically, the valuation
ratios of each PC). This specification strikes a good balance between fit and
parsimony that was explored in the papers mentioned above. To this specifica-
tion of the SDF, our model adds the factor dynamics, which allows us to solve
for the equilibrium prices of securities with arbitrary maturity.

Our model therefore integrates an existing and empirically successful speci-
fication for the SDF with a VAR structure to capture predictability across mul-
tiple horizons and therefore obtain term-structure implications. When applied
to pricing one-period returns, the model directly maps into the standard cross-
sectional pricing literature, for example, Kozak, Nagel, and Santosh (2018,
2020). Prices of risk and expected returns on factor portfolios, however, are
time-varying, which maps directly into the framework of Haddad, Kozak, and
Santosh (2020). Our paper thus generalizes and combines existing approaches
that aim to explain cross-sectional and time-series patterns, with the ultimate
goal of extracting a cross section of term structures for different portfolios. The
structure of the affine model allows us to make progress by decomposing divi-
dend yields into discount rates and expected dividend growth at each horizon,
and uses the entire estimated model (both the dynamics and the SDF, which
are estimated simultaneously) to construct the various term structures.
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B. The Setup

State-space dynamics: We begin by specifying a general factor model with &
factors F;, whose identity we will discuss later, that follow linear dynamics:

Fiii=_c¢c + p F+um, (1)
kx1 Ex1  kxk

with var; (u;11) = X constant (i.e., we assume homoskedasticity). Furthermore,
we assume that shocks u;,; are normally distributed.

SDF': Denote the risk-free rate by ;. We assume a log-linear SDF, where the
priced shocks are u; 1, with time-varying risk prices A,

1
me, 1 = —rf,t — E)\,;Z)\.t — )\;qu. (2)

Risk prices A; are assumed to be affine in F;,

M o= A + A F . (3
—_— = =
kx1 kx1 kxk kx1

Pi1+Diya
2

The price P, dividend D;, and gross return R;,; = of any test asset

satisfy the Euler equation

P Dy i1
1=F Me1_ T2 (] ) M1+ 741 . 4
' |:e B ( " P (le ] @

Here,

P, D
t+1 <1+ t+1

=A , 5
P Py )] DPr1+Yes1 (5)

ri41 = log [Rs41] = log |:

where we denote by r; 1 the log returns on the asset, which we decompose into
the sum of log price changes, Ap; ;1 = log (%), and the dividend yield, which
we define as

Given this definition of the dividend yield, we do not use any approximations
in the decomposition of log returns in equation (5). In other words, the identity
linking price changes, dividend yields, and returns is always satisfied exactly

in our paper given our definition of the dividend yield.
Under log-normality, by taking the log of both sides of equation (4), we obtain

1
0 =E; [me1] + Es [Apsg1 + ye1] + 5 var: (M1 + Apis1 +Yeqal. (7

We consider the cross section of n financial assets, which can be priced using
equation (7).
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Price dynamics: We directly specify the dynamics of log price changes in excess
of the risk-free rate on financial assets

Apii1 —Tp = Yo+ viFi + vour i1 + €p 141, (8

where we assume that expected price changes are driven by state variables in
F;, and shocks include both shocks to the state vector u;,; and asset-specific
shocks €,;,1. Note that in macrofinance models, often the dynamics of divi-
dends are specified first, together with the SDF, with prices then obtained by
combining the two through the Euler equation. Here, we follow the alternative
approach of specifying the dynamics of prices first, together with the SDF, with
the dynamics of dividends backed out of the other equations (the Euler equa-
tion and the identity linking prices, returns, and dividends). This is similar to
the setup of Campbell (1991), who eliminates consumption from the various
equations and expresses the entire model in terms of the dynamics of wealth
and returns. The relationship between the two approaches is discussed in de-
tail in Section I.C.

Dividend yields: The Euler equation (4) implies that the price-dividend ratio
of any asset can be expressed as an affine function of the state vector and
stock-specific residuals €,

¥ =bo +b1F; + €y, 9)

where parameters by and b; are of sizes n x 1 and n x k, respectively, as we
show in Appendix A.*

As we discuss below, the dividend yields and returns of some linear combi-
nation of the original assets will be part of the state vector F; itself. For those
portfolios, equation (9) is automatically satisfied without residual, with an ap-
propriate choice of coefficients b, (zeroes) and b, (linking each portfolio to its
position in the state vector). For other assets, parameters by and b; can be
solved using equation (7), given the estimates of the risk price parameters.

Excess returns: Equations (5), (8), and (9) imply that excess returns are also
affine in factors and shocks:

rep1 —rre = Po + B1F + Bousi1 + €41 (10)

In this specification, E; [r;41 —rr:] = Bo + B1F; is the risk premium of the
n assets, which satisfies the no-arbitrage condition in equation (7), parame-
ters By and B; are of sizes n x 1 and n x k, respectively, u;,1 and ¢,;,1 are the

4 In principle, y; could also depend on u;, in addition to F;. In such a case, one could express u; in
terms of F; and F,_; using equation (1), substitute it in, and satisfy the assumption by expanding
the state vector to include F;_;. To reduce estimation errors associated with large state spaces, we
instead rely on a specific empirical choice of the state vector, which we discuss below, to guarantee
that this assumption holds up well in the data (our state vector spans the yields on included
financial assets with an average R? of 99%).
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systematic and idiosyncratic shocks, respectively, and Bz is the n x £ matrix of
exposures of n assets to k£ systematic risk factors such that

Bo = vo + bo + bic, (11)
B1=y1+bip, (12)

B2 = y2 + b1, (13)
€rt+1l = €pt+1 T €yt (14)

Note that the factor dynamics, the SDF specification, and the Euler equa-
tion impose additional restrictions on the coefficients of these equations. For
example, the Euler equation links risk premia 8y and $; to risk exposures Ss.
Below, we specify the additional restrictions that lead us to an identified model.

Deflated dividends: We infer log deflated dividend growth (defined as log
dividend growth net of the log risk-free rate, Ad;,1 —ry;) from the returns
identity

Tey1 —Tfe =Yir1 + pdiy1 — pd; + (Ady1 —1py), (15)

where the log price-dividend ratio, pd;, is a nonlinear function of y; given by
pd; = — log (exp (y;) — 1).

In general, dividend dynamics are not linear because of the nonlinearity of
the relation between returns, dividends, and prices. Rather than impose ap-
proximate log-linearity via a Campbell-Shiller log-linearization, we work di-
rectly with the deflated dividends and their nonlinear dynamics, expressing
them in closed form after the model has been fully solved using observable
returns r and dividend yields y.

Specializing the state vector: We now take a stand on the state vector F;. Our
choice is motivated by the empirical findings of Kozak, Nagel, and Santosh
(2020) and Haddad, Kozak, and Santosh (2020). In particular, Kozak, Nagel,
and Santosh (2020) show that a few dominant PCs of a large cross section of
anomaly portfolio returns explain the cross section of expected returns well.
Haddad, Kozak, and Santosh (2020) further demonstrate that valuation ratios
strongly and robustly predict expected returns on these PCs—and their risk
prices in the SDF—in the time series. They argue that the resulting time vari-
ation in risk prices is critical to adequately capture the dynamic properties of
the pricing kernel.

We therefore employ a specification that is motivated by both results. We
assume that the dynamics of the economy are fully captured by p = £/2 linear
combinations of excess log returns f.; = Q' (rt — rf,t) and p linear combinations
of yields f,; = Q'y: of the n assets, for some n x p matrix @ that constructs the
same p linear combinations of these variables based on the assets:

fre Q(re —r124)
F, = = . 1
[fy,t} [ Q. } (16
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We refer to the p linear combinations of excess log returns, f.;, as factor
(excess) returns and to the p linear combinations of yields, f,: = Q'y:, as factor
yields (or factor D/P ratios).

Being a linear combination of log returns, the “factor returns” f,; are not
themselves log returns on a portfolio of assets with weights given by @, that
is, fr: is not itself the log excess return of a tradable portfolio (except for the
market, which we treat separately and include as the first factor). However,
because each of the n assets is tradable, the Euler equation has to hold for
each, so that the linear combination @ of the Euler equations has to hold as
well—a restriction we impose in solving the model.

Our parsimonious specification allows us to be consistent with both Kozak,
Nagel, and Santosh (2020) and Haddad, Kozak, and Santosh (2020): the
p-factor returns explain the cross section of expected returns well, while the
p-factor yields allow us to explain the cross section of dividend yields to satisfy
equation (9), as well as capture the dynamics of conditional means and SDF
risk prices.

This specification can be seen as an extension of the setup of Campbell
(1991), in which the dynamics of the economy (also represented by a VAR)
include returns and the D/P ratio of one portfolio (the market), plus additional
predictors. Here, the state vector includes the pair (£, f,) for p linear combi-
nations of test assets and no additional predictors.

Given that our SDF is based on that of Kozak, Nagel, and Santosh (2018)
and Haddad, Kozak, and Santosh (2020), our model naturally performs equally
well in pricing the cross section of characteristic-sorted portfolios that we use
as test assets. It is important to note, however, that this does not imply that our
specification will mechanically be able to price other assets, including dividend
strips on different underlying portfolios. The ability to price these other assets
depends on both the SDF and the structure of the dynamics in the model. This
is why, after estimating our model using available stock portfolios, we evaluate
the ability of the model to generate realistic term structures by comparing
the implied dividend term structures with those observed in the data. As we
discuss below, we find that the model does a good job in matching traded S&P
500 dividend strip data.

Restrictions: We now introduce three restrictions on the model. First, we
assume that there are only p priced risks, and that they are fully spanned by
our p return factors, so m; loads only on the p innovations in return factors
(the first p elements of u;,1). This means that only the first p elements of A,
are nonzero. In turn, this implies that only the first p rows of A and A can be
nonzero. The remaining shocks in u; drive the dynamics of the economy but
are not priced by investors. This assumption is motivated by Kozak, Nagel,
and Santosh (2018, 2020), who suggests that an SDF constructed from a
small number (p) of diversified portfolio returns well prices the cross section
of returns. We then simply allow the dynamics to also include additional,
nonpriced shocks.
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Second, we impose that only dividend yields (and not lagged returns) drive
time variation in risk premia. This means that the matrix A will have the

structure
0, A
A= | Pxp 7
Opxp  Opxp

where the zeros in the second row are due to the fact that only return shocks
are priced, the zeros in the top-left corner imply that variation in risk premia
is entirely driven by factor yields f,;, and A is a p x p matrix of risk price
loadings on dividend yields.

As we show in greater detail below, these first two assumptions imply restric-
tions on the transition matrix p of the factors. In particular, they imply that
expectations of factor returns are a function of lagged yields but not lagged re-
alized returns. To this restriction, we add a third one, on the conditional mean
of the yields: we impose that it is also a function of lagged yields but not lagged
returns. We therefore assume that

o= |:0po pny]
Opxp  Pyy |
where p,, could potentially be further restricted to be a p x p diagonal matrix,
based on the evidence in Haddad, Kozak, and Santosh (2020) that own val-
uation ratios are the strongest predictors of factor returns. We do not cur-
rently impose the latter restriction to remain as flexible as possible. The for-
mer restriction—that lagged returns forecast neither returns nor yields—is
relatively mild in our opinion, and consistent with the voluminous literature
documenting low autocorrelation in equity returns.

Note that similar restrictions have been imposed in the term-structure lit-
erature, for instance, in Cochrane and Piazzesi (2008). They specify an SDF in
which only shocks to bond yields are priced, and their SDF risk prices are fully
driven by the Cochrane and Piazzesi (2005) factor alone.

Prices of risk: Using the definition of factor returns in (10), we use (16) to
express them as

fres1 = Q' (res1 —7rre) = Bro + BraFy + Braties1, a7
where
Bro =@ Bo=cs, (18)
Br1= QB = [Opxp7 pr,y]s (19)
Bro = QB2 = [Ipxp, Opxp]- (20)

The first equality in each of the equations above reflects the fact that “factor
returns” f,.;.1 are linear combinations of test assets’ log excess returns, while
the second equality holds because each factor is part of the state-space vector
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F;, which imposes specific restrictions on all of the parameters (and leads to
the absence of idiosyncratic shocks in (17)).

We now use these restrictions to show how the factors and the Euler equa-
tion can be used to link the parameters 8 to the prices of risk in the SDF.

We plug the expressions in (2), (8), and (9) into (7) to obtain

1
01 = o+ BiFi — B30 + AF) + 5 diag[B2 285 + =] (21)

Premultiplying by €', expressing in terms of g/ ., and matching coefficients
on F;, we get two equations that can be used to solve for A and A, given the
parameters ¢, and p., and estimates of the test assets’ variance terms:

0= Br1— Br2ZA, (22)

0=Bro—BraZr+ %Q/ diag [B2 85 + Zc]. (23)

C. Discussion of the Setup

An alternative modeling setup adopted in the literature, which we refer to
as the “alternative” modeling approach, is to specify a log-linear SDF and lin-
ear dynamics for log dividend growth, and to then obtain prices by imposing
the Euler equation (e.g., see Brennan, Wang, and Xia (2004), Koijen, Lustig,
and Van Nieuwerburgh (2017), and Gupta and Van Nieuwerburgh (2021)). The
main difference between such a specification and our specification is that we
model log prices (or, equivalently, excess log equity returns) as linear in factors
F; and shocks u; , 1, whereas the alternative specification models log dividend
growth Ad; 1 as linear in F; and u;,;. Both assumptions are plausible and
both are widely used in asset pricing. The alternative assumption of dividend
growth linearity is primarily used in the macrofinance literature (e.g., in the
context of Lucas economies). Our assumption of (log) equity price and return
linearity is widespread in empirical asset pricing in the context of factor mod-
els, and in return-based models like the intertemporal capital asset pricing
model (ICAPM). In this section, we discuss in detail the relationship between
the two approaches.

Returns, dividends, and price-dividend ratios are related by the usual non-
linear identity in (15). Given that we aim to price both dividend strips
and stocks, two Euler equations need to be satisfied, for strips and stocks,
respectively,

p" D1 PV
-+ —E/|M, +1 24
Dt t[ t+1 Dt Dt+1 ) ( )
P, D
1=E| M, —22 <1 + tH) = E[M; 1R; 1], (25)
P, B

where P denotes the price on an n-year dividend claim.
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As mentioned above, the alternative approach assumes that Ad;.; =

D,

is immediate from (24) that the log price-dividend ratios of dividend strips of all
portfolios, pd,f”), will be linear in F;. The stock’s price-dividend ratio, however,
cannot be linear in F; at the same time. To facilitate estimation of the model for
directly observable stock D/P ratios, the alternative approach typically relies
on the Campbell-Shiller approximation (approximate log-linearization), under
which pd; is approximately linear in F,.> Due to these approximations, the
price of a stock under this approach is not equal to the sum of the prices of
the strips.

Under our approach, from (25), if excess returns r; 1 —ry; are linear in F;
and u; 1, and M, is log-linear, it follows that the equity—rather than strip—

log (lﬂ> is linear in F; and u; 1. If M, is also log-linear in F; and u;. 1, then it

D/P ratios, y; = log (1 + %‘) , are linear in F;. Equity returns are then linear too,

whereas pd;, pdt(”), and Ad;;1 —ry; will not be linear in F; and u;,;. Our as-
sumptions have several advantages. First, based on the observable state space,
our affine model can be estimated without imposing the Campbell-Shiller ap-
proximation (instead we impose the exact identity linking prices, dividends,
and returns). Intuitively, this is because we observe D/Ps of stocks rather than
strips in the data, so making stocks’ D/Ps (rather than dividend strips’ D/Ps)
linear in states and including them in the state vector makes the estimation
process much easier. Second, after we fully solve the affine model, we compute
dividend strip yields and implied deflated dividend growth, allowing them to
be exact nonlinear functions of F,. As a result, we automatically satisfy the no-
arbitrage condition that the price of a stock is exactly equal to the sum of the
prices of all of its dividends.

Note that if one wants to impose the Campbell-Shiller approximation, then
our approach is exactly equivalent to the alternative approach. To see this, note
further that the Campbell-Shiller approximation of the returns equation (15)
makes log (1 + e”%) an approximately linear function of pd,, that is,

log (1 + epd‘> ~a+b x pd;. (26)

Under the Campbell-Shiller approximation, both y, and pd; are (ap-
proximately) linear in F;, and hence so are dividend growth and re-
turns. To see this, note that the approximation in (26) and the identity

v; = log (1 + %’) = log (1 + epdf) — pd; imply that y, is affine in pd;. Therefore,
under either of the two setups discussed above, both y; and pd; are linear in
F,—the two setups are equivalent.

To summarize, given the nonlinearity of the fundamental identity relating
pdy, rii1, and Adyyq in (15), if any of the three components is linear in some

5 See, for example, Koijen, Lustig, and Van Nieuwerburgh (2017) and Gupta and Van Nieuwer-
burgh (2021). Alternatively, rather than specify an observable Gaussian state vector as we do in
the paper, one could introduce a latent Gaussian state vector that is nonlinearly related to D/P
ratios and solve the alternative approach exactly.
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variables F;, the others cannot all also be linear in F;. The alternative ap-
proach assumes that Ad;,; and pd” are linear (and so both pd, and y; are
nonlinear), but the Euler equation cannot be solved analytically under this as-
sumption alone. To close the model analytically, one needs to also assume the
Campbell-Shiller approximation or approximately solve a system of nonlin-
ear equations defining D/P ratios for each portfolio. Our approach assumes in-
stead that ;1 — ¢, and y; are linear in F;. These assumptions are sufficient to
solve the model fully even without imposing the Campbell-Shiller approximate
linearization. Only after our model is fully solved analytically, the remaining
quantities (e.g., Ad; 1 — 1y, pds, pdt(”) ) can be expressed as exact nonlinear
functions of the state vector F; and shock u;,;. Finally, if one is willing to im-
pose the Campbell-Shiller approximation, the two setups are equivalent.

We conclude by noting that the idea of modeling y; = log (1 + %‘), as opposed

to pd; = log (l%), has appeared in the macrofinance literature. For example,

Martin (2013) uses it to study the importance of cumulants in consumption-
based models, and Gao and Martin (2021) derive a log-linear approximation of
y: instead of pd; similar to that of Campbell-Shiller.

D. Identification and Estimation

While the model contains a large number of parameters, many of them are
related through no-arbitrage restrictions or through some of the additional re-
strictions imposed above. It will be useful to distinguish reduced-form param-
eters that directly enter moment conditions that can be estimated from the
data, and structural parameters that determine the reduced-form parameters
in turn.

Reduced-form parameters and moment conditions: The entire state vector F; is
fully observed. Equation (1) therefore implies a first set of moment conditions,
which depend on the parameters ¢ and p. We use ordinary least squares (OLS)
moments, with the additional restriction that elements of p corresponding to
loadings on lagged returns are all zero, that is, E (u41 ® [1, F,]) = 0, where
® denotes a Kronecker product. Note that for factor returns, which are part of
F;, the parameters S, B1, and Br o from (17) are a direct function of ¢ and p
(because these return equations are just the first p rows of (1)).

For test assets, we have two sets of moment conditions: one contemporane-
ously relating their yields to the factors, (9), and another relating their returns
to lagged factors, (10). These equations form a set of moment conditions that
depend on parameters By, B1, B2, bo, and b; for all test assets. We again use
OLS moments, with parameter restrictions E (g41 ® [1, Fy, urs41]) = 0 and
E (e ® [1.F,]) = 0.

To summarize, moment conditions from equations (1), (9), and (10) depend
on the parameters ¢ and p, as well as By, 81, B2, bo, and b, for all assets.

Structural parameters: We now have a set of structural parameters that are
linked to the reduced-form parameters by identities and arbitrage restrictions.
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First, the parameters yy, y1, and y» are related one-to-one to the reduced-form
parameters ((11), (12), (13)); these parameters do not add any additional re-
striction to the system, and simply correspond to an alternative representation
of (10), stated in terms of Ap,,; instead of r; .

More important are the other structural parameters A and A. These param-
eters introduce restrictions on the reduced-form parameters of all portfolios,
through valuation equation (7).

Estimation and inference: We estimate the model using generalized method of
moments (GMM). We use the moment conditions described above to estimate
the reduced-form and structural parameters (i.e., imposing the valuation re-
striction (7) using all test assets). We use a prespecified, diagonal weighting
matrix for GMM where the factor moments are weighted by one, and the indi-
vidual asset moments are all normalized by the square root of the number of
test assets, /i, to keep their contribution to the GMM objective invariant to
n.% This weighting matrix ensures a good balance between the two sets of mo-
ment conditions and yields reasonable estimates of the risk premia for all 102
portfolios, which is important in our context given the weaker factor structure
of equities compared to other settings (e.g., bonds).

We estimate the dynamics at an annual horizon using monthly data (and
therefore, using overlapping yearly observations). We derive standard asymp-
totic GMM standard errors for all reduced-form and structural parameters. To
account for overlapping data, we use a spectral density covariance matrix of
moments with 12 lags, following the approach in Hansen and Hodrick (1980).”
Finally, we compute standard errors on derived quantities—such as model-
implied yields and returns on dividend strips, which are nonlinear functions of
structural parameters—using the delta method.

Note that there are two sources of uncertainty for the model-implied mo-
ments of interest. First, there is uncertainty stemming from the fact that the
model parameters have to be estimated, and so some time series are not ob-
served but rather estimated (e.g., the time series of the prices of dividend
strips, which are not an input in our estimation and hence must be estimated).
We refer to this type of uncertainty as parameter uncertainty. Second, there
is the uncertainty stemming from the fact that some objects of interest are
unconditional moments, and their estimation requires computing time-series
averages. We refer to this type of uncertainty as sampling uncertainty. For
example, suppose that we are interested in the unconditional slope of the div-
idend strip term structure. The GMM estimator directly gives us the estimate

6 We also explored the use of efficient GMM, and found that it is numerically unstable in our
setting (which features a large number of moment conditions and parameters). This result is sim-
ilar to that in Campbell, Giglio, and Polk (2013), who use GMM to jointly estimate, in a lower-
dimensional setting than ours, the dynamics of the model and the test asset moment conditions
and also find efficient GMM to be numerically unstable. Rather than imposing restrictions on the
parameter space (e.g., bounds on risk prices) as in Campbell, Giglio, and Polk (2013) to ensure
convergence of the efficient GMM estimator, here we use a prespecified weighting matrix.

7We perform a nonparametric bootstrap exercise to validate our standard errors in
Section III.G.6.
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for this moment, together with standard errors that incorporate all types of
estimation uncertainty. However, we can separate the two by employing the
following estimation procedure. First, an estimate of the slope at each point
in time is obtained by estimating our model with GMM, estimating the model-
implied prices of long- and short-term dividend strips at each point in time, and
computing the difference between the two in each period. Next, the uncondi-
tional average slope (the quantity of interest) is estimated by taking the time-
series average of the slope estimated at each point in time. The two sources of
uncertainty reflect the two steps in this procedure. Note that if dividend strip
prices were directly observable, the parameter uncertainty would disappear
and the sampling uncertainty would account for the entirety of the estima-
tion uncertainty.

The GMM estimation approach that we describe above automatically takes
both sources of uncertainty into account when estimating any moment. But
comparing the two sources of uncertainty is useful to understand how much of
our estimation uncertainty on objects of interest (like the unconditional slope
of the dividend term structure) is due to the fact that we do not observe the
dividend strip prices, and how much of that uncertainty would exist even if we
did observe dividend strip prices, since it arises from the fact that we only have
a finite sample to work with to estimate unconditional moments.

This estimation uncertainty decomposition allows us to understand the
trade-off that our approach to estimating term structures faces, compared to
working only with traded securities: our procedure adds parameter uncertainty
to the estimation (since we need to estimate the model to generate prices of
securities like dividend strips), but has the advantage of significantly length-
ening the time series available for the study of unconditional moments, there-
fore reducing sampling uncertainty (since traded dividend strips are available
only for a short time period). In practice, we find that parameter uncertainty
is small relative to data sampling uncertainty for most moments we consider.
This observation suggests that our procedure leads to the overall reduction
of standard errors compared to methods that use traded strips but rely on a
shorter sample.

We provide more details on the estimation in Appendix B. We return to the
comparison of the sources of uncertainty when we present the empirical re-
sults.

E. Dividend Strips

We next derive the prices and returns of theoretical dividend strips in the
model. These can be computed after having estimated the entire model because
they are simple functions of the parameters we estimate via GMM. Consider
first a fully diversified portfolio with dividend D, and price P;. Note first that
since

P,ip =P exp [Z Apm}

i=1
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and
Dt+n
= n)— 1 5
Py [eXp (Yt+n) — 1]
we have
D . D . n n
= M exp | Y Apisi | = [exp (rien) — exp [ Y Aprii ).
P, Py P i=1

and hence the price of a claim to D;.,, P;'”, as a fraction of the price of the
portfolio, B, is

P . D,.
}#tzwi) EQ{ exp|: ertﬂ 1i|}

=E° {[exp YVi4n) — 1] exp |:Z (Apt+i - rf.t+i1):| } (27)
i=1
=E? {GXP |:yt+n + Z (Apesi — rf,t+i1):| } —E® {EXP |:Z (Apisi — rf.t+i1):| }
i=1 i=1
(28)
= exp (an,l + dan‘t) — exp (an.Z + anF‘t) (29)
The parameters in this equation can be shown to satisfy the recursions
*k * 1 / 1 2
Qn. =y 1. +v+dp 1.5+ §(dn,1,. + ¥2)(dn-1,. +12) + 500> (30)
dn. =y +dn-1.0%, (31)

with initial values ap1 = by + % (O’r2 - O'UZ) R dO‘l = b, apo = 0, d(),2 =0, O'r2 =
var (¢), and 02 = var (v;). In these formulas, stars indicate risk-neutral param-
eters.® In our estimation, we find that the risk-neutral dynamics of the model
are stationary, which is sufficient to guarantee that the price of the stock mar-
ket, which is the infinite sum of the prices of the dividend strips, is finite. Note
that the prices of dividend strips are obtained as a function of observable ex-
cess returns and dividend yields and their dynamics (captured by F; and their
dynamics). This is because specifying these dynamics implicitly fully specifies
the dynamics of deflated dividends, which are sufficient to pin down dividend

strip prices. Note also that w" can be interpreted as cap-weights of each divi-
dend within a portfolio of all d1v1dends of a stock (i.e., the stock itself).

8 Risk-neutral parameters are defined as Ye =70 —veZh ¥y =v1— VeEA, ¢ =c— XA, and p* =
p— XA
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Equity yields: We can also compute equity yields (for assets/portfolios with
strictly positive dividends) at time ¢ with maturity n, e;,, as defined in van
Binsbergen et al. (2013):

1 D, P(n)
en = log (P(”)) |:10g(exp (y)) — 1) —log (%t)} (32)

Forward equity can be easily computed using the (externally) observable
bond yields

1 D
e;tf:n = _10 (Et ) =€n —ygn, (33)

where y?, is the nominal government bond yield with no default risk, and F, ,
denotes the futures (or forward) price, which, under no arbitrage, is linked to
the spot price by

F,, =P, exp (nyfn) (34)

In Appendix A, we provide additional definitions and derivations for returns
and expected returns on dividend strips in our model. In addition, we show that
equity yields can be decomposed into log (expected) hold-to-maturity returns
and log (expected) cumulative deflated dividend growth rates (see (A17) and
(A19)).

II. Data
A. Stock Data

We focus on a broad set of 51 stock-specific characteristics and long and
short legs of portfolio sorts based on these characteristics.” We construct these
portfolios as follows. We use the universe of CRSP and Compustat stocks and
sort them into three value-weighted portfolios for each of the characteristics
studied in Kozak, Nagel, and Santosh (2020) and Kozak and Santosh (2020)
and listed in Table IA.IIT in the Internet Appendix, for a total of 51 charac-
teristics.!? Portfolios include all NYSE, AMEX, and NASDAQ firms but the
breakpoints use only NYSE firms as in Fama and French (2016). We obtain
102 portfolios, two for each anomaly (P1 and P3). Our sample consists of
monthly returns from February 1973 to December 2020. For each portfolio, we

9 Our data are available at https://www.serhiykozak.com/data.

10 The Internet Appendix may be found in the online version of this article. We apply the follow-
ing two automatic filters to characteristics as in Kozak, Nagel, and Santosh (2020) and Kozak and
Santosh (2020) to arrive at 51 characteristics: (i) mark portfolio returns as missing if a portfolio
contains fewer than 100 firms at any point in time, and (ii) remove characteristics for which more
than 120 months of returns are missing, in either a short leg or a long leg.
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construct a corresponding measure of its valuation based on D/P ratios of the
underlying stocks. We then construct the yield, y;, as defined in equation (6).1!

We also construct long-short portfolios as differences between each
anomaly’s log return on portfolio 3 minus the log return on portfolio 1. Their
valuation ratios are defined as the difference in yields y; between the two legs.
Most of these portfolio sorts exhibit a significant spread in average returns
and CAPM alphas. This finding is documented in the vast literature on the
cross section of returns and can be verified in Table IA.III. In our sample, most
anomalies show a strong pattern in average returns across tercile portfolios,
consistent with prior research.

B. Choice of Variables in the State Vector

Kozak, Nagel, and Santosh (2018, 2020) show that a few dominant PCs of
a large cross section of anomaly portfolio returns explain the cross section
of expected returns well. We use this insight to guide our choice of portfolios
in the state-space dynamics in equation (1). In particular, we use excess log
returns on the market and three PCs of 51 long-short portfolio returns based
on the underlying long and short ends of each characteristic used in sorting as
our choice for f,; in equation (16). Formally, consider the eigenvalue decompo-
sition of anomaly excess returns, cov (rLS.Hl) = QAQ, where @ = [¢1, ..., 1]
is the matrix of eigenvectors and A is the diagonal matrix of eigenvalues. The
i PC portfolio is formed as PC; ;.1 = §irss41 = g, (ri+1 — ), where §; is the
i column of @, ¢; = [G:, —G:], and ryi1 — ry; are excess log returns on 102
portfolios underlying the long-short anomalies.

Table I shows that anomaly portfolio returns exhibit a moderately strong
factor structure. Panel A focuses on long-short portfolios with the market,
which captures the vast majority of all comovement across portfolios, effec-
tively removed. It therefore focuses on explaining the remaining variation in
portfolio returns once the market has been removed. The first PC accounts for
one-fourth of the total variation. The first three PCs explain more than 50% of
the variation not captured by the market. Panel B extracts PCs of all 102 long
and short legs of each sort, not subtracting the market. It shows that the first
four PCs (approximately the market and three cross-sectional PCs) capture
more than 95% of the variation in returns across 102 portfolios.

Haddad, Kozak, and Santosh (2020) further demonstrate that valuation ra-
tios strongly and robustly predict expected returns on these PCs—and their
risk prices in the SDF—in the time series. They argue that the resulting time
variation in risk prices is critical for adequately capturing dynamic proper-
ties of the pricing kernel. Motivated by this evidence, we pick four yields cor-
responding to the market and three PC factors as our choice for y; in equa-
tion (16). Yields on PCs are constructed simply as a linear combination of log

11 The D/P ratio of a portfolio is defined as the sum of all dividends paid within the last year rel-
ative to the total market capitalization of all firms in that portfolio. Equivalently, it is the market-
capitalization-weighted average of individual stocks’ D/P ratios.
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Table I
Percentage of Variance Explained by Anomaly PCs

This table reports the percentage of variance explained by each PC of the 51 long-short anomaly
portfolio returns (Panel A) and each PC of 102 returns on long and short legs of each characteristic
sort (Panel B). PC1 in Panel B refers to the market portfolio.

PC1 PC2 PC3 PC4 PC5 PC6 PC7T PC8 PC9 PC10
(@] (2) (3) 4) (5) (6) (7) (8) 9) (10)

Panel A: Long-Short (51 portfolios)

% Var. explained 249 194 10.1 5.7 4.3 3.9 3.1 2.9 2.5 2.2
Cumulative 249 443 544 601 644 683 714 743 768 79.0

Panel B: Long and Short Legs (102 portfolios)

% Var. explained  88.8 4.1 1.6 0.9 0.6 0.5 0.5 0.3 0.3 0.2
Cumulative 888 929 945 955 96.1 965 970 973 976 978

yields on underlying portfolios, with weights determined by returns’ eigenvec-
tors, Yp, = Q;'yt-

In summary, our state vector includes returns and yields on the market,
three PCs of long-short log returns, and their valuation ratios for all test
assets. We validate this choice by conducting an out-of-sample analysis in
Section I11.G.4.

C. Bond Data

Our model is designed to be orthogonal to the term structure of interest
rates and does not require any bond data to estimate the model, other than the
one-year risk-free rate r¢,. To compute forward equity yields (for which bond
yields are needed), we use data from Gurkaynak, Sack, and Wright (2006), who
provide a long history of interpolated U.S. bond yields.

After merging the equity and bond data, we obtain a full sample of annual
(overlapping) observations at the monthly frequency from February 1973 to
December 2020.

III. Results

In this section, we report empirical results of our estimation. We begin by
reporting the estimates and fit of the model. Specifically, we show how the
model fits the returns of the 51 anomaly portfolios, their price-dividend ratios,
and their dividends.

We next evaluate the performance of the model against data not used in
the estimation: the term structure of S&P 500 dividend strips and futures. We
show that the dividend strips implied by our estimated model closely match
the prices of the traded strips. We therefore replicate the main facts of van
Binsbergen, Brandt, and Koijen (2012), van Binsbergen et al. (2013), and van
Binsbergen and Koijen (2015) on the term structure of S&P 500 dividend strips
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and forwards. We view this exercise mainly as an out-of-sample validation of
our empirical setup.

Having validated our model, we explore the novel empirical facts that
emerge from our model, along both the cross-sectional and the time-series di-
mensions. In the cross section, we show that our model produces a rich variety
of shapes for the term structures for different portfolios. In the time series, we
show that the slope and the shape of the term structure of different portfolios
vary in interesting ways over time. Finally, we discuss various implications
and applications of our results.

Taken together, our results show that the term structures of discount rates
are heterogeneous across types of risks (captured by different portfolios) and
vary significantly over time. The empirical patterns that we extract from the
data in Section III.D (e.g., the difference in the term-structure behavior of
value and growth stocks or of high- and low-profitability stocks) provide new
moments that can help guide the construction and evaluation of asset pric-
ing models.

A. Fit of the Model

As discussed in Section I.D, we estimate our model in one step via GMM.
The core of our model are the time-series dynamics of the dividend yields and
returns of the four factors (the market plus three PCs from 51 anomalies).
Table II reports estimates of the dynamics of the factors F;: ¢ and p. As dis-
cussed in Section I, we impose the restriction that the conditional mean of re-
turns and yields is a function only of lagged yields, not lagged returns, that is,
0= [OKX P p.,y]. Thus, in Table IT we omit zeros and reports only estimates and
standard errors of p.,, as well as c. In parentheses, we report GMM standard
errors using a spectral density matrix with 12 lags.

For comparison, Table III reports the risk-neutral parameters c? and p?
implied by the model. Note that all conditional loadings of returns on lagged
yields are zero, p,, = 0, since under the risk-neutral dynamics the expected
excess return on any asset is equal to the risk-free rate. We therefore report
only loadings of yields onto lagged yields, p,,, as well as the intercepts, ?
and c? . The intercepts of the return regressions, cfz, are nonzero and reflect a
variance adjustment.

The last column of Table II also shows the R? for each of the eight equa-
tions of the dynamics of F;. The first four regressions are effectively predictive
regressions of yearly excess returns using the lagged dividend yields of the
factor portfolios as predictors; the last four regressions are predictive regres-
sions of dividend yields using lagged dividend yields as predictors, again for the
four-factor portfolios. The results are consistent with those in Haddad, Kozak,
and Santosh (2020), who show that PCs of anomaly returns are strongly and
robustly predictable by their valuation ratios, with this predictability essen-
tial to capture dynamic properties of an SDF. The authors also show that this
predictability survives out-of-sample, suggesting that our analysis should be
robust to out-of-sample tests.
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Table II
Estimates of the Dynamics of the Factors F;

This table reports estimates of the dynamics of the factors F; in equation (1): ¢ and p., in p =
[OKx P pwy], and the R? for each of the eight equations of the dynamics of F;. Hansen-Hodrick
GMM standard errors using a spectral density matrix with 12 lags are reported in parentheses.
The dynamics are estimated at an annual horizon using monthly overlapping observations in the
February 1973 to December 2020sample.

c Py R?
(1) (2) (3) (4) (5) (6)

Pkt 0.07 -0.16 1.35 3.21 0.50 10.44
(0.068) (4.8) 1.7 (1.5) (0.9 -

Tpel —0.05 -16.13 11.39 4.23 —2.57 22.09
(0.2) (15) (4.8) (3.2) (2.1) —

Tpe2 0.26 —7.54 0.34 1.12 0.06 7.19
(0.12) (3.8) (2.2) (2.9) (1.6) -

Tpe3 0.08 -0.64 1.46 3.88 1.40 11.62
(0.081) (5) 1.7 (1.5) (1) -

Vokt 0.00 0.93 —0.00 0.02 -0.01 97.58
(0.0015) (0.086) (0.035) (0.038) (0.034) -

Ypel —0.00 0.57 0.72 0.02 —0.23 96.98
(0.0046) (0.25) (0.091) (0.083) (0.051) -

Ype2 —0.01 -0.25 0.03 0.44 -0.10 71.19
(0.0062) (0.27) (0.17) (0.25) (0.072) -

Ype3 —0.01 —0.58 0.31 0.08 0.01 20.32
(0.0053) (0.27) (0.088) (0.11) (0.11) -

Table IIT

Risk-Neutral Estimates of the Dynamics of the Factors F;
This table reports risk-neutral estimates of the dynamics of the factors F; in equation (1): ch, cf s

and ,oy?y in @ = [c?, c?} and p@ = [Opr, p%}, where p% = [0, pﬁ?y] . The sample comprises an-

nual overlapping observations at the monthly frequency from February 1973 to December 2020.

C? C;g py?y

(1) (2) (3) (4) (5) (6)
MKT —-0.01 0.00 0.92 0.03 0.09 —0.00
PC1 0.03 —0.00 0.33 0.94 0.19 —0.26
PC2 0.03 -0.00 -0.24 -0.16 0.35 —0.06
PC3 —0.00 —0.00 -0.35 0.18 0.14 0.10

One of the main objectives of the model is to fit the cross section of returns for
the 51 anomalies (not just the four linear combinations that we use as factors).
The average R? for the regression of portfolio returns in equation (10) is 93.3%.
The average R? for the regression of dividend yields onto the factor dividend
yields in equation (9) is 98.7%. Our model also well fits the cross section of risk
premia for the 51 anomalies, reaching a cross-sectional R? of 42.9% in the full
sample from February 1973 to December 2020. This compares favorably with
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—— Market — |PC1 — PC2 — PCB

Factor yields

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Figure 1. Time series of factor yields. This figure shows factor yields, f,, for the aggregate
market and three PCs of anomaly portfolios. Annual dividends; monthly overlapping observations.

—— Market — |PC1 PC2 — PC3

Factor returns

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Figure 2. Time series of factor returns. This figure shows factor returns, f;;, for the aggregate
market and three PCs of anomaly portfolios. Annual returns; monthly overlapping observations.

the R? of 73% one obtains on the much narrower cross section of 25 size and
book-to-market-sorted portfolios when using the three Fama-French factors
(Fama-French factors explain the cross section of 51 anomalies with an R?
close to 0%).12 This evidence demonstrates that our model performs well in
fitting not only the dynamics of the PCs themselves, but also the time-series
and cross-sectional properties of the 51 anomalies.

To get a sense of the factors’ behavior in the data, Figures 1 and 2 plot the
time series of factor returns and factor yields. Several interesting patterns
are worth noting. First, while the first factor (the market) has an extremely
persistent dividend yield, as is well known in the literature, the other fac-
tors’ persistence is significantly lower. Second, the factors clearly capture
different economic forces. For example, the fourth factor captures relatively
high-frequency dynamics, whereas the third factor is most strongly associated
with the financial crisis.

The fact that these factors display different dynamics is crucial for our
identification. Haddad, Kozak, and Santosh (2020) argue that time-series

12 Kozak, Nagel, and Santosh (2018) provide more detailed evidence on the relative performance
of a PC-based model and the Fama-French model in explaining a wide cross section of anomaly
returns, which is consistent with our findings.
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predictability of these PC-based factors is critical to adequately capture the
dynamic properties of the pricing kernel — this is the key motivation for our
choice of the state-space vector. We can identify term structures of discount
rates only because we can identify shocks to dividends and discount rates
at different horizons—in other words, to estimate how investors price these
shocks differently, we need to be able to estimate shocks that give rise to
different dynamic responses of the economy. Intuitively, by studying how
prices of portfolios respond to short-lived shocks to their dividends, we can
learn about the discount rate at short horizons (controlling for discount rate
movements that are correlated with the dividend shocks) and by studying how
prices respond to shocks that affect dividends far in the future, we can learn
about the long-term discount rate (again controlling for simultaneous dis-
count rate changes). To identify different points along the term structure, we
therefore need to observe different shocks at different horizons for dividends
and discount rates. To empirically validate the idea that our model is able to
capture both short- and long-term shocks to portfolios, we regress returns on
the long-short duration sorted-portfolio on the variables in the state vector,
F;, and find that the R? of this regression is 92% (see Table IA.V). This result
suggests that the factor innovations do indeed capture news that drives the
wedge between short-duration and long-duration portfolios.

B. Fit to Traded S&P 500 Dividend Forwards

An important step forward in understanding the term structure of risk pre-
mia in the data and in the models comes from the study of traded claims to
dividends of finite maturity (dividend strips and dividend futures), starting
with the seminal work of van Binsbergen, Brandt, and Koijen (2012). Recent
papers expand the sample to include the prices of dividend forwards traded
over the counter and, more recently, on exchanges (e.g., van Binsbergen and
Koijen (2015) and Bansal et al. (2021)).

One of the main goals of our paper is to provide a framework to recover
implied dividend strip and forward prices from data that only include equity
portfolios.!® A simple and direct criterion to evaluate whether we can do so
successfully is to verify whether our implied dividend forwards match those
from the traded contracts (when the latter are available). In this section, we
compare the time-series and cross-sectional moments of our implied dividend
forwards against those reported in Bansal et al. (2021) and van Binsbergen
and Koijen (2015) for the traded S&P 500 forwards. Given that the sample of
traded dividend forwards used in these papers starts in 2004, we estimate our
model in the full sample but focus here on the corresponding moments from
the 2004 to 2020 sample, so that the sample moments are directly comparable.

Figure 3 plots the time series of the forward equity yields implied by our
model (defined in equation (33)) against the most recent data from Bansal

13 Our recovered synthetic dividend strip yields data are available at https:/www.serhiykozak.
com/data, together with the standard errors on the estimated prices.
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Figure 3. Model-implied forward equity yields versus forward equity yield data. This
figure compares our model-implied forward yields for maturities one, two, five, and seven years to
their empirical counterparts in Bansal et al. (2021). Shaded areas depict two-standard-deviation
bands around point estimates. Model parameters are estimated in the full sample, from February

1973 to December 2020.
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Figure 4. Dynamics of model-implied yields in the Bansal et al. (2021) sample. This
figure shows equity yields constructed using the trailing 12-month dividend. Model parameters
are estimated in the full sample, from February 1973 to December 2020.

et al. (2021). The first four panels report the equity yields and standard errors
for maturities one, two, five, and seven years, respectively. The figure shows
that our model does a good job overall in matching the traded forward equity
yields. Individual model-implied yields are close to the dividend strip yields
that we observe in the data, and most of the time they are within standard
error bounds. That said, they are not an exact fit, just as we see in the bond lit-
erature.

Figure 4 summarizes the dynamics of the model-implied yields in this sam-
ple, and closely resembles figure 1 in Bansal et al. (2021). As can be seen from
this figure, the shape of the term structure varies over time. It is sometimes
relatively flat (e.g., between 2012 and 2019), sometimes upward sloping (as at
the beginning of 2010), and sometimes steeply downward sloping (as during
the financial crisis)—just like the traded forwards.

To be clear, this evidence should not be interpreted as implying that our syn-
thetic dividend yields are precise estimates of true yields point-by-point, as the
confidence bands reflecting parameter estimation uncertainty are fairly wide.
Rather, by extending the effective length of the time series of dividend strips,
our model delivers more statistical power that can be used to more precisely
estimate interesting moments (e.g., the average slope of the term structure),
compared to using the shorter time series of observable dividend strips.

Table IV reports statistical patterns of empirical yields based on BMSY data
(“Actual”), the model estimated in the same sample (“Fitted”), and the fitting
error (“Actual— Fitted”) for the level (Panel A) and slope (Panel B) of the term
structure. The table shows that the model fits yields well on average (first row).
That said, the fit is not always precise in every time period, which can be seen
in this table as the variability of pricing errors (second row). These findings
carry over to slopes of dividend yields (Panel B).

Given these results, it should not be surprising that we also well match
the unconditional moments. For example, we find that, consistent with van
Binsbergen and Koijen (2015), the average term structure of forward premia
is close to flat for the United States after 2004, with a slight downward
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Table IV
Accuracy in Fitted versus Actual Dividend Yields

We present means and standard deviations (in %), as well as annual autocorrelation for ob-
served BMSY forward yields (“Actual”), model-implied yields (“Fitted”), and the fitting errors
(“Actual—Fitted”) in levels (top panel) and slopes (bottom panel).

1Y 2Y 5Y 7Y 1Y 2Y 5Y 7Y 1y 2Y 5Y 7Y
(D (2) 3 4) (5) (6) (7 (8) 9 qo0 a1 a2

Panel A: Level

Actual Fitted Actual—Fitted

Mean -5.09 —-4.55 -3.88 -3.77 —-6.80 —-569 —-445 —-414 171 114 0.58 0.37
S.D. 985 6.71 336 294 919 644 316 239 558 354 196 1.89
AC 030 026 024 025 013 010 015 020 0.13 0.06 0.42 0.60

Panel B: Slope

Actual Fitted Actual—Fitted
Mean — 0.54 1.22 1.32 - 111 235 2.66 — —-0.57 —-1.13 —1.33
S.D. - 3.56 6.86 7.26 - 296 654 7.38 - 2.96 491 5.13
AC — 0.31 0.30 0.29 - 0.25 0.21 0.20 — 0.31 0.18 0.14
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Figure 5. Estimated term structure of forward risk premia. This figure shows mean real-
ized returns on dividend strip forward contracts in the 2005 to 2020 sample (solid blue) and the full
sample (dashed red). Shaded areas for each line depict two-standard-deviation error bands around
point estimates. Model-implied GMM standard errors using a spectral density matrix with 12 lags
for full-sample errors (narrow red bands; model and sampling uncertainty). In the 2005 to 2020
sample, we show empirical HAC robust standard errors associated with the estimate of the mean
of realized strip returns (sampling uncertainty; wide blue bands).

slope at the short end and a slight upward slope at the long end. The solid
blue line in Figure 5 shows the estimated term structure of forward risk
premia for this (post-2004) sample. The figure also shows the average term
structure estimated using the full sample, which begins in 1973, along with
two-standard-deviation bounds for both lines. We use model-implied GMM
standard errors, which incorporate all model uncertainty, for the full-sample
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Figure 6. Decomposition of the two-year equity yield in the Bansal et al. (2021) sample.
The figure decomposes the two-year equity yield on the market into log HTM risk premium and
log dividend growth net of the risk-free rate.

estimates, and empirical heteroskedasticity and autocorrelation consistent
(HAC) robust standard errors associated with the estimate of the mean of
realized strip returns, which only reflect sampling uncertainty, for the BMSY
sample estimates. The figure shows that our standard errors are substantially
narrower even though they incorporate all model estimation uncertainty. This
is due to our ability to estimate means in the longer sample enabled by our
use of stock returns data rather than dividend futures data.

We explore the two sources of uncertainty further in Figure IA.5. Panels A
and B focus on the full sample and the BMSY sample, respectively. In each
figure, the blue shaded area shows GMM two-standard-error bounds, which
incorporate model parameter and sampling uncertainty, while the red area
reflects sampling uncertainty only. The figure shows that the entirety of the
variation here comes from the sampling uncertainty, which would exist even
if prices were perfectly observable. That is, while model uncertainty due to the
fact that prices have to be estimated might be nontrivial, it is dominated and
washed out by the sampling uncertainty associated with estimating mean re-
turns or average yields. Going back to Figure 5, this explains why the standard
errors over the 2004+ sample (in blue) are close to those implied by the esti-
mates in table 4 in Bansal et al. (2021), whereas the standard errors that we
obtain over the full sample (in red) are significantly tighter.

Another dimension along which our data well match the results in van Bins-
bergen et al. (2013) is the decomposition of equity yields into cash-flow and dis-
count rate components. van Binsbergen et al. (2013) show that, surprisingly,
expected cash-flow variation is a major driver of the movement in the equity
yields; figure 7 in their paper shows that the sharp increase in the equity yield
for the S&P 500 during the financial crisis can be attributed almost entirely to
a sharp decline in expected dividend growth. We perform the same decompo-
sition in our model. Figure 6 shows that the results are extremely similar to
those in van Binsbergen et al. (2013).

The Internet Appendix shows the similarity between our implied yields and
those from Bansal et al. (2021) and van Binsbergen and Koijen (2015) along
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Figure 7. Dynamics of model-implied forward equity yields for the aggregate market
for different maturities. The figure plots dynamics of model-implied forward equity yields of
maturities one, two, five, and seven years. Equity yields are constructed using the trailing 12-
month dividend. The sample is from February 1973 to December 2020.

additional dimensions. Specifically, in Figure IA.1, the average market beta of
the strips of different maturity is similar to that reported in van Binsbergen
and Koijen (2015, figure 4). Figure IA.2 further shows that the one-year re-
turns of the one- and two-year dividend forwards in the data and in our model
match well.

To conclude, when we compute theoretical dividend forwards and strips from
our model (estimated using only equity portfolios) and compare them with the
prices of actually traded dividend strips, we find that they match well along
several dimensions. These results provide external validation of the ability of
our model to capture the dynamics of risk and cash flows and investor risk
preferences along the term structure.

We next use the model to explore the behavior of the equity term structure
over the longer sample (beginning in 1975), after which we turn to the cross
section of term structures for different risks.

C. The Time Series of the Equity Term Structure since the 1970s

Figure 7 shows the forward equity yields for the aggregate market for dif-
ferent maturities, as estimated from our model. The results confirm many of
the patterns reported above for the post-2004 data: the term structure is gen-
erally close to flat, with periods of positive slope during booms and periods
of inversion during busts. Interestingly, the term structure appeared signifi-
cantly more stable up to the early 1990s, remaining essentially flat for almost
two decades. The brief recession of the 1990s led to an inversion of the curve,
which was followed by a period in which the slope changed sign several times.

The changes in the slope of the term structure are strongly correlated with
the macroeconomic cycle. To see this more clearly, Figure 8 shows the term
structures conditional on being or not being in an NBER recession. Outside
recessions (blue line) the term structure is mildly upward sloping on average.
In recessions, in contrast, the term structure is downward sloping.
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Figure 8. Term structures of equity yields conditional on NBER recessions. The
figure shows the term structures conditional on being (red) or not being (blue) in an NBER re-
cession by maturity. Shaded areas depict two-standard-deviation error bands around point esti-
mates. The table reports differences of equity yields (“Level diff.”) and differences of equity yield
slopes (relative to a two-year equity yield; “Slope diff.”) in recession minus expansion, and their
associated ¢-statistics based on GMM standard errors with a spectral density matrix with 12 lags.

The table under the plot shows the differences between these two lines and
their associated ¢-statistics (“Level diff.”). It also shows the difference in the
slopes (difference between each maturity and maturity 2, “Slope diff”). Equity
yields are statistically significantly higher in recessions than expansions for
dividend claims of up to eight years. Equity yield slopes are significantly dif-
ferent at the 5% level for maturities above seven years (i.e., 7-2 slopes) and
at the 10% level for all maturities. Standard errors in this plot reflect both
parameter and sampling uncertainty.

One of the advantages of our method is the ability to study the behavior of
the term structure over a much longer sample that includes several recessions
(contrary to the post-2004 sample, in which the only recession is the financial
crisis). We can therefore ensure that the patterns we find are not due entirely
to the specialness of the Great Recession. For example, we see inversion in the
yield curve at several other times in history, as confirmed in Figure 8 which
averages across all recessions.

It is worth recalling that the slope of the term structure of equity yields
has a direct interpretation in terms of the term structure of discount rates
for different horizons. As pointed out by Dew-Becker et al. (2017) and Backus,
Boyarchenko, and Chernov (2018)

1
Py E log (Rt,t+n) —Elog (Rt,t+1) =Ee, —Ees 1.
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Figure 9. Decomposition of the five-year equity yield. The figure decomposes the five-year
equity yield on the market into log HTM risk premium and expected log dividend growth net of
the risk-free rate in full sample, February 1973 to December 2020.

This result highlights how the main facts about the conditional and uncondi-
tional term structure of equity yields from van Binsbergen, Brandt, and Koijen
(2012) extend to our full sample starting in the 1970s.

Finally, in Figure 9, we show the decomposition of the five-year equity yield
into expected annual dividend growth over five years and expected hold-to-
maturity (HTM) excess returns. This figure confirms that a large fraction of
the variation in equity yields is driven by expected dividend growth as opposed
to discount rate variation.

Extending the equity term-structure data to the 1970s yields several new
insights. First, as mentioned above, the term structure appeared much less
volatile before the 1990s. Second, it appeared to have been effectively flat for
decades. Third, there had been times before the financial crisis in which mar-
kets strongly anticipated negative dividend growth; for example, during the
recession of the early 1980s and early 1990s, these movements appear to have
been reflected in the prices of equities and (implied) equity strips.

D. Cross Section of Term Structures of Different Risks

The most interesting advantage of our model is that it can generate term
structures for different types of risks, as captured by different portfolios. For
example, it can produce a term structure of discount rates for value firms and
a term structure for growth firms, one for small firms and one for large firms,
and so on. These term structures can be used in turn to test the implications
of structural models that have cross-sectional implications.

As an example, different structural models have been proposed to explain the
value premium. But these models mainly confront the average risk premium
of value versus growth portfolios. These models also have implications for the
term structure of discount rates on value and growth stocks, which will be an
especially important moment for models in which the dynamics of shocks play
a role in determining risk premia.
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Figure 10. Slope 7-1 of forward equity yields for small and large stocks. The figure shows
time series of the estimated slope of forward equity yields (7y — 1y) from our model for diversified
portfolios of small (long) and large (short) stocks in the full sample, February 1973 to December
2020.
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Figure 11. Slope 7-1 of forward equity yields for value and growth stocks. The
figure shows time-series of estimated slope of forward equity yields (7y — 1y) from our model for
diversified portfolios of value (long) and growth (short) stocks in the full sample, February 1973 to
December 2020.

Figures 10 and 11 show the time series of the estimated slope of forward
equity yields (7y — 1y) from our model, for small stocks (long) and large stocks
(short) and for value stocks (long) and growth stocks (short), respectively. Many
interesting patterns can be seen.

Large firms’ and small firms’ term structures moved in similar ways in sev-
eral periods (e.g., during the financial crisis), but their equity yields went in
opposite directions during the tech boom and bust. Moreover, whereas the eq-
uity term structure inverted for small firms during the tech boom, it did not
do so for large firms. During the financial crisis and the Covid episode, how-
ever, both curves inverted. In contrast, no such divergence in the behavior of
the term structure can be seen for value and growth stocks in that period—the
largest difference in that case occurred in the recovery from the financial cri-
sis: after 2008, the slope of the term structure increased significantly for value
but not for growth stocks.

Figure 12 depicts the term structure of risk premia for a number of long-
short portfolios. Panel A shows the difference in risk premia between small
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Figure 12. Term structure of risk premia for long-short portfolios. Panel A shows the dif-
ference of realized risk premia between small and large stocks, value and growth stocks, and high
versus low momentum stocks. Shaded areas depict one-standard-deviation error bands around
point estimates. Panel B shows the difference of realized risk premia across select anomaly port-
folios: SMB, HML, MOM, INV, PROF, STREV, IVOL, and Age.

and large stocks, value and growth stocks, and high versus low momentum
stocks, for different horizons. Shaded areas depict one-standard-deviation er-
ror bands around point estimates (for readability). Note that these long-short
portfolios have positive risk premia in this sample. Yet the term structures of
these risk premia are quite heterogeneous. For example, the SMB portfolio ap-
pears to exhibit a downward-sloping term structure, while the HML portfolio
has an upward-sloping term structure. Theoretical models that aim to explain
the value and size spreads can make use of these estimates to help refine and
calibrate the economic mechanisms (taking into account, of course, the sub-
stantial estimation uncertainty associated with these unconditional moments).

It is important to note that our term structures correspond to term struc-
tures of actively managed portfolios that are rebalanced at an annual or
monthly frequency. This choice of basis assets is motivated by two observa-
tions. First, it directly parallels the construction of traded claims on dividend
strips of aggregate indices, such as the S&P 500 in the United States. Indeed,
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dividend strips on the S&P 500 are claims to the dividends that future con-
stituents of the S&P 500 index will pay in the future, rather than dividends
on today’s constituents of the index. Second, Keloharju, Linnainmaa, and
Nyberg (2019) show that differences in expected returns across firms decay
within five years. Their findings suggest that term structures of any portfolio
sorted on today’s characteristics should approximately converge to the term
structure of the aggregate market at that horizon. We avoid such convergence
in our results by focusing on term structures of actively managed portfolios.
To the extent that firm characteristics capture economically relevant risk
exposures (e.g., if book-to-market captures distress risk), it is meaningful to
try to understand the pricing of potential risks that affect stocks with those
characteristics at various horizons, for example, the pricing of shocks that will
affect distressed stocks in the future.*

Many other portfolios exhibit interesting term structures. Panel B of the
figure shows the difference of realized risk premia across a few additional
anomaly portfolios: SMB, HML, momentum, investment, profitability, short-
term reversals, idiosyncratic volatility, and age. Some have strikingly different
shapes. For example, the term structure of risk premia for the portfolio sorted
on idiosyncratic volatility is sharply downward sloping up to around five years,
then it becomes mildly upward sloping. The term structure of risk premia for
the age portfolio is hump-shaped.

We conclude that our model generates rich predictions about the differential
behavior of term structures across portfolios, both in the time series and on av-
erage. These results present new moments that structural asset pricing models
can try to match, in addition to the term structure of the aggregate S&P 500
dividend that has previously been studied using traded dividend forwards.

E. Implied Dividend Growth

In our model, deflated dividend growth (i.e., net of the risk-free rate) is
pinned down exactly by equation (15). Since we model both returns and D/P
ratios as inputs, dividends are just a deterministic function of these observable
variables and thus perfectly match the data, month by month. Note that we do
not use log-linearizations in this expression; dividends are therefore given by
an exact (nonlinear) function of returns and equity D/P ratios. The dynamics
of dividends are thus pinned down entirely by the dynamics of these variables.

We now come back to the discussion of dividend growth predictability in
our model. We observe relatively strong model-implied dividend predictability
across the board, for many stock portfolios as well as for the aggregate market
(Panel A of Figure 13). Dividend growth predictability is strongest, however,
for medium- to high-frequency strategies, such as momentum, in which case
dividend growth can be predicted with R? exceeding 80%. Panel B of Figure 13

14 That said, if one wanted to construct term structures of dividends of a fixed portfolio of stocks,
they could be easily approximated by overlaying the term structures of the managed portfolios we
report (at short horizons) and that of the aggregate market (at longer horizons).
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Figure 13. Expected and realized dividend growth for the market index and momen-
tum stocks. Panel A plots time series of the model-implied expected (blue) and realized (orange)
dividend growth for the aggregate market index, net of the risk-free rate. Panel B plots results for
the momentum stock portfolio.

shows time series of the model-implied expected (blue) and realized (or-
ange) deflated dividend growth for the momentum stock portfolio. Similar to
Figure 6, we find that most of the variation in equity yields on high-momentum
stock is driven by variation in expected dividend growth. This, in turn, implies
that dividend growth on high-momentum stocks is highly predictable by their
equity yields, consistent with the findings of van Binsbergen et al. (2013).

Dividends can thus be used to provide additional validation of the equity
yields constructed using our model. To motivate this idea further, first note
that log gross dividend growth at an n-year horizon, Ad; ., is given by

Adt,tJrn =Ttt+n — Netn, (35)
DH»n

Pt(n)
strip from ¢ to ¢ + n, and e; ,, is the equity yield on an n-year dividend strip at

where ;4 = log( ) is the log of the HTM return on an n-year dividend
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Table V
Dividend Growth Predictability

Panel A reports average R? in the cross section of 102 portfolios from regressions of n-year dividend
growth on: (i) the equity’s own dividend-to-price ratio (D/P), (ii) the model-implied dividend yield
on an n-year dividend strip, (iii) the BMSY dividend yield on an n-year dividend strip (Panel B
only), and (iv) model-implied expected dividend growth net of the risk-free rate at each horizon,
E[Ad — r¢]. The last row in each panel shows p-values of a one-sided ¢-test of the equality of the
two means of R2 distributions for D/P and EY (model) regressions. Panel A reports results for the
full sample; Panel B focuses on the BMSY sample.

Horizon 1-Year 2-Year 3-Year 4-Year 5-Year 6-Year 7-Year

Panel A: Full Sample

D/P 3.7 3.5 3.7 4.4 5.1 6.0 7.0
EY (model) 17.8 12.9 9.0 6.9 6.1 6.5 7.3
E[Ad -7yl 19.9 16.6 14.6 13.1 13.4 13.4 16.0
p(R2,, =R%y) 0.00 0.00 0.00 0.00 0.10 0.28 0.35

Panel B: BMSY Sample

D/P 36.0 25.6 16.6 9.7 10.3 115 12.9
EY (model) 415 36.4 25.1 13.3 12.9 135 14.8
EY (BMSY) 20.7 185 — —~ 7.9 — 9.1
E[Ad — 1yl 42.6 44.9 36.6 21.5 21.5 23.5 25.4
p(R2,, =R%y) 0.01 0.00 0.00 0.01 0.06 0.12 0.15

time ¢ as defined in equation (32) (see Appendix A for the derivation). This is
an exact formula that does not require any approximations.
Second, notice that this equation holds in expectations, that is,

E; [Adt.t+n] =E, [T‘t,t+n] — Nétn. (36)

Third, recall from Figure 6 that most of the variation in short-term equity
yields comes from expected dividend growth rather than discount rates.

Equity yields, therefore, are natural predictors of dividend growth rates at
all horizons, especially so at short horizons. We use this insight to investigate
dividend growth time-series predictability using model-implied equity yields in
the full sample. As a benchmark, we use dividend growth predictability based
on a stock’s own D/P ratio as is standard in the literature.'

In Table V, we report means of R? computed in the cross section of 102 port-
folios from regressions of n-year dividend growth on several variables (all uni-
variate regressions). Panel A presents the results in the full sample, Panel B
in the post-2004 sample. In the first row, we use as the predictor the equity’s
own D/P ratio. We find limited predictability of dividends using this variable,
consistent with the literature.

15 We also considered a specification with an additional predictor—lagged dividend growth—
with similar results.
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In the second row, motivated by the analysis above, we use the model-implied
dividend yield on an n-year dividend strip as a predictor. We observe substan-
tially higher predictability—a statistically significant difference in predictabil-
ity up to four years in maturity, as can be seen from the p-values of a one-
sided ¢-test of the equality of the two means of R? distributions for D/P and
EY (model) regressions (the last row in the panel). In the third row, we use
the model-implied expected dividend growth net of the risk-free rate at each
horizon, E[Ad —r/], as a predictor. This is the same object depicted in blue in
Figure 13. We see that this variable predicts realized dividends even better
than the dividend yield.'®

Lastly, we compare the predictability between our model-implied equity
yields and their empirical counterparts based on dividend strip data from
BMSY. To do so, we limit our sample to theirs. We report all the results in
Panel B. We now include an additional row “EY (BMSY),” which includes R?
averages of regressions that use BMSY equity yields as a predictor. Perhaps
somewhat surprisingly, in spite of the visual similarity of BMSY and our
equity yields depicted in Figure 3, we find that our model-implied EY performs
significantly better than the observed BMSY yields in predicting cumulated
realized dividend growth in the data. Similarly to the full-sample case, our
model-implied expected dividend growth (fourth row of Panel B) predicts re-
alized dividend growth even more robustly than model-implied equity yields,
even though we do not directly target dividend predictability in our estimation.

We conclude that dividends up to four years are significantly more pre-
dictable using equity yields extracted from the model than when using a
stock’s D/P. This fact serves as additional indirect validation of the model
in that it is able to extract useful information embedded in equity yields
that helps predict dividends on a wide cross section of test asset portfolios.
Figure IA.8 provides distributions of R? for both predictors across portfolios.

F. Applications

We briefly discuss in this section three potential applications of our findings.

F.1. New Moments for Model Evaluation

As mentioned in the introduction, we first view our methodology as a way to
extract novel moments of the term structure of discount rates (its conditional
and unconditional slope) for a variety of portfolios. Rather than work directly
with the rich dynamics of the economy and the large cross section of available
equity portfolios, researchers can use the generated term structures, to cal-
ibrate and evaluate models and compute valuations of investments. We also

16 We use expected deflated dividend growth as opposed to expected dividend growth because
the former is an output of our model; since we do not model the process of the risk-free rate, our
model does not provide estimates for expected nondeflated dividend growth at horizons beyond one.
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produce standard errors on our estimates, which can be used together with the
point estimates to properly account for the estimation uncertainty.

One natural application of our term structures is the evaluation and testing
of asset pricing models. Many asset pricing models, for example, the long-run
risk, habit formation, and rare disaster models, have strong predictions about
the moments we estimate in the data. For example, van Binsbergen, Brandt,
and Koijen (2012) and van Binsbergen and Koijen (2015) show that the slope
of the aggregate dividend term structure observed in the post-2004 sample is
on average too low to be explained by the long-run risk and habit formation
models, but their conclusions rely on a small sample that includes the finan-
cial crisis.

Using our approach, we can evaluate these models against the unconditional
slope of the forward yields curve estimated since 1975. Having 45 years of
data, and being able to look at maturities beyond seven years, gives our ap-
proach more power for these tests and brings data from new economic cycles.
In Section I of the Internet Appendix, we illustrate this exercise by simulating
different models and evaluating them against our estimated term-structure
moments. Specifically, we look at the slope of the term structure of equity
yields and forward equity yields, the risk premia associated with strips and
forwards of different maturity, and the cyclicality of the slope of the term struc-
ture of equity yields. We study five models—the long-run risk models of Bansal
and Yaron (2004) (BY) and Bansal, Kiku, and Yaron (2012) (BKY), the habit-
formation model of Campbell and Cochrane (1999) (habit), the model of Let-
tau and Wachter (2007) (LW), and the rare-disaster model of Gabaix (2012)
(disaster)—and show that each model can match some, but not all, of the rich
set of new moments that we bring to the table. This exercise represents an
illustration of the type of additional model evaluations that can be conducted
using our estimates.

In addition to extending the results on aggregate dividend strips, our paper
can also be used to directly test the implications of models about the term
structure of discount rates of specific portfolios. For example, Hansen, Heaton,
and Li (2008) discuss the implied term structure of value and growth stocks
in their model. Production-based models (e.g., Belo (2010) and Kogan and
Papanikolaou (2013, 2014)) specify the dynamics of the SDF and the risks
of different types of firms and therefore have direct implications about the
term structure of discount rates for value firms, growth firms, high- and
low-investment firms, and so on, for which we provide estimates. We leave
evaluation of the cross-sectional term-structure implications of these models
to future research.

F2. Valuation

Our model can also be used to value investments whose cash flows pay off
at various horizons. Once the riskiness of any investment with a specified
maturity is determined (i.e., the relation between investment returns and
our factors F, and their innovations), either through economic theory or
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empirically, our model provides the appropriate term structure of discount
rates for that investment. For example, it can be used to value private equity
investments as in Gupta and Van Nieuwerburgh (2021), or to study long-
term discounting for climate change mitigation investments as in Giglio et al.
(2015), who used the term structure of long-run discount rates on housing only.

F.3. Hedging Portfolio Construction

Our work identifies four priced factors and associated dynamics and pricing.
The model can therefore be used by investors that would like to get exposure
to specific types of risks. The main advantage of our model relative to standard
models that are specified only in terms of shocks is types of risks can be more
easily identified. For example, the model can be used to build a portfolio that
isolates cash-flow or discount rate risk at any specified horizon.

In addition, as we explored in Section II of the Internet Appendix, the model
can be used to explore the links between characteristics sorts (e.g., duration)
and risk exposures. As an example, in that section we show that sorting portfo-
lios by the level of the term structure of discount rates yields a portfolio that is
principally exposed to the first PC (the second factor after the market), which
commands a Sharpe ratio of 0.71 in our model.

G. Robustness
G.1. Counterfactual Analysis: Alternative Models of the SDF

In this section, we investigate whether simpler models (in which the factors
are not based on the PCs of a large set of anomalies) could also produce esti-
mates for the equity strip prices that match the data from the traded contracts.
We consider two benchmarks.

Our first benchmark is the conditional CAPM model. That is, we assume
that there is a single priced source of risk—the aggregate market—and its
risk price time variation is driven by the aggregate D/P ratio. We replicate our
main analysis above for this choice of state vector, which now contains only
two variables.

Our second benchmark is the five-factor model of Fama and French (2016)
supplemented by the momentum factor from Carhart (1997). Like our main
specification, we consider the setup with four returns (the market and three
PCs of the five cross-sectional factors), that is, our state vector contains eight
variables.!” We replicate our analysis for this choice of state vector.

We display the results in Figure IA.6. Panel A shows results for the CAPM
benchmark. Panel B shows results for the Fama and French five-factor model,
supplemented with the momentum factor. The figure plots the time series of
yields in the BMSY sample. It is evident from the plots that the dynamics of

17 This specification performs better than a specification based on the six unrotated factor
returns. We therefore report the former specification.
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implied dividend strip yields for both benchmarks are rudimentary: all yields
move almost synchronously with no yield curve inversions occurring in this
sample for the CAPM model. The yields implied by the Fama and French five-
factor model look very different from dividend strip yields observed in the data.

We conclude that our rich specification is key to capture the dynamics of
equity strips in the data. This is because our specification successfully explains
both the cross section and the time series of U.S. equity returns. In contrast,
SDF's implied by stylized models, such as the CAPM or the Fama and French
five-factor model, do not feature rich enough dynamics to match the empirically
observed patterns in equity yields.

G.2. Additional Out-of-Sample Analysis

As we discuss in the previous sections, the main way the model is evaluated
is in its ability to match the time series of the traded dividend strip prices. In
this sense, our main analysis is already out of sample because traded dividend
strip prices are not used in the estimation. In this section, we present two
additional out-of-sample analyses.

First, we split our sample into two parts: 1973 to 2005, and 2005 to the
present. We chose the split point in 2004 because this is when the BMSY data
become available, which provides a natural out-of-sample test for our purposes.
We estimate the model using data in the first part of the sample only. We then
fix the parameters and apply them to estimate equity yields in the 2005 to
present sample. Importantly, the PCs and their associated eigenvectors are
also estimated only in the pre-2005 sample.

We report the root mean squared errors (RMSESs) of model-implied relative
to empirical equity yields in Panel A of Table VI (second line; split sample).
We depict the dynamics of the estimated equity yields in the 2005 to present
sample in Figure IA.9. Overall, compared to the full-sample RMSEs in the first
line of Panel A and to Figure 4, the out-of-sample yields are very similar to
their in-sample counterparts. Parameter estimates of the state dynamics are
also similar (not reported). This evidence gives us confidence that our results
are not driven by merely overfitting the data in sample.

As a second test, we also implement a full rolling estimation. The third line
of Panel A shows RMSE of the model which starts with the pre-2005 training
sample and updates it annually on a rolling basis. Figure IA.10 depicts the
model-implied yields based on this rolling estimation procedure. Qualitatively,
the patterns in yields are similar to those estimated both in full sample and in
pre-2005 sample.

G.3. Alternative portfolio sorts

While our main specification focuses on a cross section of 51 portfolios which
were used in prior work (Kozak, Nagel, and Santosh (2020), Kozak (2024)),
we consider here two alternative sets of portfolios to assess the robustness of
our results.
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Table VI
Robustness
The table reports RMSEs for forward equity yields of maturities of one, two, five, and seven years
and the average RMSE (last column) across several alternative specifications. Panel A reports
RMSEsS of the main specification (51 anomalies) in and out of sample. Panel B explores alternative
portfolio sets and reports RMSE in full sample. Panel C reports out-of-sample RMSEs for models

with varying number of PC factors. Panel D adds bond factors. Panel E adds volatility factors.

1-Year 2-Year 5-Year 7-Year Average
(1) (2) (3) 4) (5)
Panel A: Main Specification: 51 Anomalies
Full sample 0.058 0.037 0.020 0.019 0.034
Split sample 0.057 0.037 0.022 0.020 0.034
Rolling estimation 0.058 0.038 0.021 0.020 0.034
Panel B: Alternative Portfolio Sets
GHZ 0.075 0.046 0.027 0.024 0.043
WRDS financial ratios 0.070 0.042 0.019 0.017 0.037
Panel C: Varying Number of PCs Out of Sample
MKT only 0.094 0.065 0.033 0.029 0.055
MKT + 1 PC 0.084 0.056 0.027 0.024 0.048
MKT + 2 PCs 0.064 0.045 0.027 0.024 0.040
MKT + 4 PCs 0.088 0.058 0.025 0.022 0.048
MKT + 5 PCs 0.088 0.061 0.033 0.028 0.052
MKT + 6 PCs 0.087 0.068 0.045 0.039 0.06
Panel D: Bonds
MKT+2PCs + 1 bond PC 0.073 0.053 0.032 0.028 0.047
MKT+3PCs + 1 bond PC 0.061 0.043 0.024 0.022 0.037
MKT+2PCs + 2 bond PCs 0.070 0.051 0.043 0.044 0.052
MKT+3PCs + 2 bond PCs 0.083 0.058 0.033 0.028 0.051
Panel E: Volatility
MKT+2PCs + vol (mkt) 0.073 0.053 0.033 0.029 0.047
MKT+3PCs + vol (mkt) 0.065 0.044 0.025 0.022 0.039
MKT+2PCs + vol (PC) 0.067 0.049 0.031 0.028 0.044
MKT+3PCs + vol (PC) 0.092 0.073 0.046 0.037 0.062

The first set uses return predictive signals from Green, Hand, and Zhang
(2014) (GHZ) to form sorted portfolios, which are widely used in the litera-
ture.'® This set contains 102 anomaly characteristics (therefore 204 between
low- and high-tercile portfolios).

18 Green, Hand, and Zhang (2014) provide SAS code to generate their characteristics, which we
have used to construct our own portfolio sorts.
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The second set uses WRDS financial ratios constructed by Wharton Re-
search Data Services. This set was also used in Kozak, Nagel, and Santosh
(2020). The set contains over 70 different financial ratios, categorized based
on economic intuition into the following seven groups: (i) Capitalization:
measures the debt component of a firm’s total capital structure (e.g., Capital-
ization Ratio, Total Debt-to-Invested Capital Ratio), (ii) Efficiency: captures
the effectiveness of firm’s usage of assets and liability (e.g., Asset Turnover,
Inventory Turnover), (iii) Financial Soundness/Solvency: captures the firm’s
ability to meet long-term obligations (e.g., Total Debt to Equity Ratio, In-
terest Coverage Ratio), (iv) Liquidity: measures a firm’s ability to meet
its short-term obligations (e.g., Current Ratio, Quick Ratio), (v) Profitabil-
ity: measures the ability of a firm to generate profit (e.g., Return on Asset
(ROA), Gross Profit Margin), (vi) Valuation: estimates the attractiveness
of a firm’s stock (overpriced or underpriced; e.g., P/E ratio, Shiller’s CAPE
ratio), and (vii) Others: Miscellaneous ratios (e.g., R&D-to-Sales, Labor
Expenses-to-Sales).

In Panel B of Table VI, we report full-sample RMSEs for traded dividend
strip yields of the model estimated using these alternative data sets. The table
shows that using these alternative data sets produces qualitatively similar re-
sults as the main specification (first line of Panel A), in terms of both general
fit metrics and implications for dividend yields. Figures IA.3 and IA.4 compare
yields at each maturity to BMSY yields. Overall, the results indicate that our
setup is not particularly sensitive to the choice of test assets and that alterna-
tive choices deliver qualitatively comparable results.

G.4. Number of PC Factors

We next explore the robustness of our results to using a different number
of PCs in the state space. There is an inherent trade-off between choosing a
number that is too low versus too high. Figure IA.7 shows that in cases in
which the number of factors is one (market) or two (market + PC1), implied
strip dividend yields exhibit extremely simplistic dynamics that are visibly in-
compatible with the prices of dividend futures that we observe in the data. A
model that has two cross-sectional PCs (and the market) performs only slightly
worse than our primary specification. Increasing the number of PCs to four or
five still performs reasonably well, but the out-of-sample (split sample) perfor-
mance starts to deteriorate as can be seen in Panel C of Table VI. The reason
is that the number of parameters we need to estimate for the physical dynam-
ics (VAR) grows as a square of the number of PCs. Predicting returns in the
time series is notoriously difficult, so the increased number of free parameters
proves challenging for the estimation.

A model that includes the market and three PCs—our primary specification
(second line in Panel A)—strikes a good balance between flexibility (bias) and
overfitting (variance).
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G.5. Additional Factors and Predictors of Risk Prices

The goal of this paper is to produce a parsimonious specification that can
generate empirically plausible patterns of dividend strip yields. As shown
above, we find that our specification that includes only valuation (D/P) ra-
tios as predictors is sufficiently rich to achieve that objective. D/P ratio is
a somewhat special predictor because it is a part of the return, it must be
included in the state space to make the model solvable. Conveniently, Haddad,
Kozak, and Santosh (2020) show that valuation ratios alone are powerful
predictors of SDF risk prices. However, it is interesting to explore the po-
tential of additional predictors to improve the fit of the model. Importantly,
adding predictors does not necessarily improve model performance out of
sample (e.g., to fit the dividend strip prices) because it adds parameters to be
estimated, which can lead to overfit. In this section, we explore this question
empirically.

Specifically, we explore modifications to our specification in which we add
additional variables: (i) rolling one-year volatility (of the market or the first
PC of factor volatilities), and (ii) the risk-free bond (the first two PCs of
bond excess returns across maturities). For each of the new variables, we
supplement the state space by a corresponding factor return and a predictor.
For volatility, we use a volatility-mimicking portfolio return (as a return)
and volatility itself (as a predictor).!® For bond PCs, we use a bond return
PC (as a return) and its corresponding forward spread (as a predictor). We
report the results in Panels D and E of Table VI, respectively. Overall, adding
these variables leads to a deterioration of fit, which suggests that the benefits
of more restrictive parsimonious specifications (without bond and volatil-
ity) generally outweigh the costs of the bias due to the exclusion of these
variables.

G.6. Nonparametric Bootstrap

We conduct a nonparametric bootstrap exercise to compute standard errors
that we then compare to the GMM standard errors used in our main specifi-
cation. We draw 48 years with replacement, each including 12 monthly obser-
vations, and include the 12 preceding monthly observations to maintain the
time-series structure in estimating the dynamics in our state vector. We then
use this bootstrapped sample to estimate the main parameters of the model
(¢, p, bo, b1, B2) in our GMM and compute the rest of quantities based on these
estimates. Next, we use the actual time series to compute and construct equity
yields, returns, and other variables of interest. We repeat this entire process
500 times. Finally, we compute standard deviations of equity yields across all
500 bootstrapped estimates of forward equity yields and produce an analog of
Figure 3 in which standard errors are now based on this bootstrap procedure.

19 Volatility is partially spanned by the variables included in the state vector (R? = 30%) and is
negatively correlated with the slope of equity yields (—0.3).
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Figure IA.11 shows the results. Standard errors are remarkably close to our
GMM-based standard errors with Hansen-Hodrick correction. To assess the
relative magnitudes of standard errors across the two methods quantitatively,
we also report time-series averages of standard errors (in %) for forward eq-
uity yields of maturities of one to seven years in Table IA.IV. In Panel A we
focus on the post-2004 (BMSY) sample used in Figure IA.11. As in the figure,
we can see that bootstrap standard errors are very close to the model-implied
GMM standard errors. Our standard errors tend to be somewhat smaller than
the bootstrapped ones (up to 30% smaller for the seven-year yield) only at high
maturities. Panel B shows the same results for the entire sample. The conclu-
sion remains unchanged.

IV. Conclusion

Our model effectively processes a rich information set (the time-series and
cross-sectional behavior of 102 portfolios spanning a wide range of equity
risks) to produce “stylized facts”—the time-series and cross-sectional behav-
ior of implied dividend term structures—that summarize a dimension of the
data that is particularly informative about our economic models. Similar in
spirit to the way in which the introduction of VARs by Sims (1980) provided
new moments against which to evaluate structural macro models (the impulse-
response functions that were generated by the VARs), the objective of this pa-
per is to produce realistic term structures of discount rates for different port-
folios that closely resemble the actual dividend claims that we observe in the
data and that can be used by asset pricing models as a moment for evaluation
and guidance.

Our approach uses only a cross section of equity portfolios to produce new
(implied) term-structure data that expand the existing (observed) data along
each of those dimensions. The term structures that we generate cover a large
number of cross-sectional portfolios, in addition to the S&P 500: value, size,
profitability, momentum, etc., for the 102 portfolios. Moreover, they have a long
time series, starting in 1975, and therefore cover several recessions and booms.
They also have all possible maturities, including the very short and the very
long ends of the term structure.

The main building block of our specification is the carefully crafted state-
space vector, which includes four excess returns (on the market and three
PCs of anomaly portfolios) and four valuation ratios corresponding to these
portfolios. This choice is motivated by recent empirical evidence in Kozak,
Nagel, and Santosh (2020) and Haddad, Kozak, and Santosh (2020) that (i) an
SDF constructed from dominant PCs of a large cross section of characteristic-
sorted portfolios explains the cross section of expected returns well, and (ii)
SDF risk prices corresponding to these factors are highly predictable in the
time series by their valuation ratios, and this variation in risk prices is es-
sential to adequately capture dynamic properties of the SDF. It is this choice
of the state-space vector that represents the core of our paper: it allows us to
produce term structures of discount rates that well match the observed term
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structures, and increases confidence in extending them over time, maturities,
and portfolios.

We derive several novel empirical results. First, we extend the study of the
term structure of aggregate dividend claims (on the S&P 500, as in van Bins-
bergen and Koijen (2015)) over time (back to the 1970s) and across maturities.
In the sample starting in 2004 used by van Binsbergen and Koijen (2015), we
match the time series of dividend forward prices very closely, and mechani-
cally we also match the term structure of discount rates. The term structure
of discount rates appears to be slightly downward sloping in this sample, in
contrast to the predictions of many models like the long-run risk model that
instead predict that it should be steeply upward sloping. Extending the sample
to the 1970s allows us to include several additional recessions in our sample,
and the Great Recession carries less overall weight in the sample. It is inter-
esting to see that many of the results of the post-2004 sample carry over to
the longer sample. For example, the term structure inverts in almost all of the
additional recessions (e.g., in the early 1980s and 1990s), and the term struc-
ture of forward discount rates is still close to flat (it is mildly upward sloping
on average, but not significantly so).

Most importantly, the model generates interesting differences in the aver-
age term structures across portfolios. For example, we show that some port-
folios (e.g., size-sorted portfolios or idiosyncratic volatility-sorted portfolios)
have downward-sloping average term structures of risk premia, whereas oth-
ers (e.g., book-to-market sorted portfolios) have upward-sloping term struc-
tures. These results give us new moments that can be used to evaluate struc-
tural asset pricing models that have direct implications about the risk premia
of these portfolios (as well as any of the other 102 portfolios that we include in
our analysis).

There are also interesting patterns in the time series of slopes of the term
structure of different portfolios. For example, the slopes of small and large
stocks often move closely together, with both term structures were upward
sloping during the 1990s and downward sloping during the Great Recession,
but only the term structure for small stocks inverted during the late-1990s
stock cycle, marking an important divergence between the two portfolios that
lasted several years. In contrast, no such divergence in the shape of the term
structure can be seen for value and growth stocks in that period. Instead, the
largest difference in that case occurred in the recovery from the financial cri-
sis: after 2008, the term structure of value-stock expected returns increased
significantly, whereas this pattern did not occur for growth stocks.

Overall, stylized facts that we document provide new conditional moments
that asset pricing and structural macro models should seek to match. While
we have explored some of the term-structure implications of a small number of
models, more work remains to be done to fully explore the implications of our
cross section of equity yield term structures.

Finally, we emphasize that our estimates of equity yields, discount rates,
and returns on specific dividend claims are subject to estimation uncertainty.
Compared to the traditional approach of using observed prices of traded
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dividend strips to learn about the term structure of risky claims, our method-
ology has important advantages and disadvantages. On the one hand, it re-
quires estimating the full model to obtain estimated prices for the dividend
strips. This introduces parameter uncertainty. On the other hand, it allows us
to dramatically expand the available time series, which reduces the sampling
uncertainty that is common to both approaches. This trade-off, and, more gen-
erally, overall uncertainty, need to be taken into account when bringing empiri-
cal moments from these estimation methods to the theoretical models. For this
reason, we provide full data on standard errors of our synthetic equity yields
along with their point estimates on our website.2’

Initial submission: March 31, 2021; Accepted: April 7, 2023
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong

Appendix A: The Model

Dividend yields: We start with the Euler equation in (7) and guess the solution
of the form in (9). Plugging the expressions (1) to (3), (8), and (9) into (7), we
obtain

1 !
0=—rs — Q)Ltzt)vt + (rf,t + v+l +bo+ blFt+1)

1
+§ var; [—X;utJrl + (b1 + Y2 )ut+1 + 6r,t+1]’ (A1)

1 ..
0 = (vo + niF) + [bo + bi(c + pF)| — (b1 + 12)EA + 5 diagll,  (A2)
where diag [Q] = diag[(b1 + y2)E(b1 + 2) + =c]. Matching coefficients on the

constant and F;, we have

1
0=(yo—y2ZA)+bo+bi(c—ZA)+ 5 diag [Q], (A3)
0=(y1—1XA)+bi(p — ZA). (A4)

Given the estimated risk price parameters A and A, price dynamics param-
eters yo, y1, and ys, state-space dynamics parameters ¢ and p, and variances
¥ and X, this gives us two equations to solve for two parameters determining
dividend yield parameters by and b;.

Expected returns on dividend strips: Excess (level) returns on dividend strips
can be computed using

1 1
w _ PV/Pai Py P" VP

t P™ /P, P exp (~771) = PP, exp [(rev1 —rpe) = yen]-

(A5)
Note that

20 See https://www.serhiykozak.com/data.
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Pt(n) QB Py s
ik (40

=E2 [(exp (an-1.1 + dn-1.1F+1) — exp (an-1.2 + dp_1.2Fp11))e P77 ] (A7)
= exp (an,l + dn,lE) — exp (anA,Z + dn,ZE)a (A8)

where a, . and d,, . are given by iteration equations (30) and (31).
We can now compute

P(n 1)
E, [ 5 th} E¢ [ T Péatle’“} (A9)
=E, [(exp (an-1.1+ dn-1.1F11) — €xp (an-12 + dn_12F11))eP+1777¢] (A10)
= exp (dn,l + Jn,lE) — exp (dn,z + d~n.2E>a (All)

which is exactly the same equation as above, except that expectation is taken
under physical dynamics. The solution for @, . and d, ., therefore, is given by
the recursion equations (30) and (31), where we simply replace y;, y;, ¢*, and
p* by their physical counterparts.

Log expected excess returns on the strip are

) Py Y
log (IEt [Rm]) —rs; =logE, [ 5 R}:t] log [ 5 } (A12)
=log[exp (@1 + d.1Fr) - exp (a2 + o oF )| (A13)
—log [exp (an1 + dn.1F;) — exp (an2 + dn2F)]. (A14)

Equity yield decomposition into hold-to-maturity (HTM) returns and expected
growth rates: Let Ry ;., = m) be the HTM return from ¢ to ¢t + n. Excess re-

turns are then given by

Ritin  Dign/P,

- : (A15)
Rf,t,t+n Pt(n)/Pt fit.t+n
Taking expectation, we have
-1
Riiin E (Rf.t,t+nDt+n/Pt>
Ey = ) ) (Al16)
Rf.,t,t+n Pt /P,

where the numerator is just equation (27) computed using physical param-
eters, and the denominator is the same expression computed under risk-
neutral dynamics.

Taking logs of the above and dividing through by n gives an annualized log
expected HTM return.
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Furthermore, note that we can write

D.. D,
Rijop=bm = 2t (A17)
t,t+ l:)t(n) B(n) t,t+

where Gy, is the cumulative growth rate. We then get

Ritin D G in
B gt | = 26 xE [ e | (A18)
Rf.t,t+n Pt(n Rf,t.t+n
or
1 Ry iin 1 D 1 Gt 1in
_logIEt|: Lit ]:—log Tt) —i——log]Et[ Lt } (A19)
n ftt+n n P, n fitt+n

that is, the dividend yield can be decomposed into the annualized log expected
HTM return and the log cumulative growth rate (both excess of the risk-free
rate).

Note that log returns on dividend strips can be expressed as

1 1 D;., 1 D,
N log (Rt,H—n) =n log ( Pt(n) ) = log (ﬁGt,H—n) (A20)
1
=€rn + E IOg (Gt.t+n)- (Az]—)

As in Backus, Boyarchenko, and Chernov (2018), taking unconditional ex-
pectations of this equation for strips of maturities n and one, and subtracting
them, gives

1
; E log (Rt’tJrn) —E log (Rt'pﬁl) =K €tn — E €1, (A22)

that is, the unconditional slope of the dividend yield curve is equal to the slope
of the expected log strip return curve.

Appendix B: Estimation

The system of equations consisting of state-space dynamics (1), test asset
returns (10), and yields (9) is estimated jointly to obtain the estimates of the
vector of parameters

0 =lc, Prys Pyys B2.u» bo, bl,y]/s (B1)

where B is restricted to load only on shock to returns, that is, f2 = [B2.4,, 0nxpl,
and b1 = [0 p, b1,] is restricted to load only on valuation ratios. Parameters
ory and py, denote subblocks of the matrix p that correspond to return and D/P
loadings on y, respectively.
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The system is solved using an iterative Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm. At each iteration, we perform the following steps, which we
repeat until convergence:

(i) Given current values of ¢, p,,, and p,,, the transition matrix p is recon-
structed, shocks u;,1 in (1) are computed, and X is estimated.

(ii) Given current values of 82 ,, and b1, the variables 8, and b; are con-
structed for test assets by imposing the restrictions that 8y loads only
on shocks to returns and b; loads only on valuation ratios, respectively.

(ii1) For state variables (market and principal components [PCs]), the Bs are
given by equations (18) to (20).

(iv) For given parameter values at any step, we compute prices of risk pa-
rameters A and A in equation (3) via a simple solution to the system of
p= %k equations for variables in the state space given by equations (A4)
and (A3). Note that parameters A and A inherit restrictions on physical
dynamics. Specifically, only the first p elements of A are nonzero, since
only shocks to PC returns are priced. Similarly, A takes the form

afoe A7
OPXP OPXP

where A is a p x p matrix of risk price loadings on D/Ps, which are all
fully pinned down by the physical dynamics as well.

(v) Given the estimates of parameters A and A, we can now compute 8y and
B for all test assets using an analog of equations (A4) and (A3) applied
to test assets.

(vi) Lastly, we stack state and test asset returns and D/P equations, as well
as all parameters. We then use them to estimate the shocks, instru-
ments, and moment conditions. The moment conditions are as follows:
(a) Using the state vector dynamics in equation (1), we construct shocks

u;,1 and interact them with instruments that contain a vector of
ones and valuation ratios F;. This corresponds to standard OLS mo-
ments with the additional restrictions that the elements of p corre-
sponding to loadings on lagged returns are all zero,

E (ut+1 ® [LFyt]) =0,

where ® denotes a Kronecker product.

(b) Using return equation (5), we construct shocks to returns, ¢,;.1, and
interact them with instruments that contain a vector of ones, valu-
ation ratios in F;, as well as contemporaneous return shocks in u;, 1,

E (Eht+1 ® [1, F;,.t, unt+1]) =0.

(c) Using the price-dividend equation (9), we construct residuals e,
and interact them with instruments contain a vector of ones and
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contemporaneous D/P ratios in the state vector,
E (e ® [LF,]) = 0.

We use a prespecified generalized method of moments (GMM) weighting ma-
trix in the GMM objective, where the time-series moments have weight one
and individual assets’ moments are all weighted by the inverse of the square
root of the number of test assets, \/n, to keep their contribution to GMM objec-
tive invariant of n.

0 = arg mﬁingT(O YWgr(6). (B2)

The following parameters are estimated by GMM:

(i) State-space vector variables:
(a) Intercept c: k parameters.
(b) Loadings p: k loadings onto D/P ratios, £ x p parameters.
(i) Asset-specific parameters:
(a) Intercepts of D/P equations by: n parameters.
(b) Loadings of assets’ D/P ratios onto state-space D/P ratios: n x p
(loadings on returns are restricted to zeros).
(¢) Loadings of assets’ returns onto state-space shocks to returns: n x p
(loadings on D/Ps are restricted to zeros). All other loadings of test
assets’ returns are pinned down by no arbitrage and SDF risk prices.

The spectral density covariance matrix of moments uses 12 lags and follows
the approach in Hansen (1982).

Lastly, to compute standard errors on means of yields or returns (risk pre-
mia) that account for both model parameter uncertainty and data sampling
uncertainty, we expand the set of moments to include moments corresponding
to a regression of these variables on a constant. We then use the structure of
our GMM estimator to obtain correct standard errors on the intercept, which
is the estimate of interest.
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